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Robust and Efficient Feature Tracking
for Indoor Navigation
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Abstract—Robust feature tracking is a requirement for many
computer vision tasks such as indoor robot navigation. However,
indoor scenes are characterized by poorly localizable features.
As a result, indoor feature tracking without artificial markers
is challenging and remains an attractive problem. We propose
to solve this problem by constraining the locations of a large
number of nondistinctive features by several planar homographies
which are strategically computed using distinctive features. We
experimentally show the need for multiple homographies and
propose an illumination-invariant local-optimization scheme for
motion refinement. The use of a large number of nondistinctive
features within the constraints imposed by planar homographies
allows us to gain robustness. Also, the lesser computation cost
in estimating these nondistinctive features helps to maintain the
efficiency of the proposed method. Our local-optimization scheme
produces subpixel accurate feature motion. As a result, we are able
to achieve robust and accurate feature tracking.

Index Terms—Distinctive features, feature tracking, motion
refinement, multihomographies, nondistinctive features.

I. INTRODUCTION

ROBUST feature tracking is a basic requisite for indoor
robot navigation [1], [2]. In this context, we define robust-

ness as the ability to accurately track features over all the image
frames in which a feature appears, without being deceived by
false matches. Monocular-vision-based robot navigation partic-
ularly requires a good feature tracking for robot localization.
In the navigational context, the task of the feature tracker is to
identify the features that are suitable for tracking and to locate
them in subsequent images (Fig. 1). Simple feature trackers
such as the Kanade–Lucas–Tomasi (KLT) tracker [3] are not
robust enough as they fail to match features accurately in sub-
sequent images [1], [4]. This failure is due to two reasons: First,
the features used for tracking are nondistinctive features such
as corners using normalized cross correlation (NCC), which
are based on constancy over a window. Second, motion models
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Fig. 1. Motion of a pixel x between two images. A is the first image, and B is
the second image. C is the first image transformed using the homography onto
the first image.

used for tracking are not rich enough to describe the feature
motion with respect to the camera. We propose a robust tracker
suitable for vision-based robot navigation using a combination
of distinctive and nondistinctive features and a multihomo-
graphic motion model. Our tracker has applications in fast and
reliable object tracking [5], [6], image retrieval [7], mosaicking
[8], pose detection [9], multiview 3-D reconstruction [10], and
robot navigation [11]–[13].

The tracker that we propose in this paper constrains the
locations of a large number of nondistinctive features by several
planar homographies which are strategically computed using
distinctive features. To this end, our system performs the fol-
lowing steps:

1) extract distinctive and nondistinctive features for a key
frame pair;

2) project nondistinctive features for any other frame pair;
3) compute multiple motion models (homographies) from

distinctive features with random sample consensus
(RANSAC);

4) refine the tracked feature positions (and, thus, the motion
model) for all the frame pairs, given the homographies,
using an extended version of the KLT feature tracker;

5) recompute the homographies and update the Kalman
filters which track the homographies by exploiting the
motion continuity.

A key frame pair is a pair of frames for which we perform the
scale-invariant feature transform (SIFT) feature detection and
matching in full. Among features, SIFT features are our dis-
tinctive features. Distinctive features can be tracked reasonably
well without using a motion model. A distinctive feature, while
corresponding to a physical entity such as a corner, is a vector
of values characterizing the physical feature, its location, scale,
and approximate orientation. As a result, they can be matched
across wide baselines more accurately than the nondistinc-
tive features. However, the computation of distinctive features
and matching are expensive, whereas computing nondistinctive
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features is less expensive. We use these two types of features
at two different stages of the algorithm: distinctive features for
the homography estimation and nondistinctive features at the
motion refinement stage. The motion refinement stage is where
we use an extension of the KLT method to refine the motion
given by the homographies. Accurate feature matching can be
used to calculate the motion model for planar scenes. In our
case, this motion model is multihomographic. A homography
maps the image of a plane in one image onto the same plane on
another image (see Fig. 1). There can be multiple homographies
corresponding to many planar structures that are present in the
scene. Therefore, our motion model consists of multiple ho-
mographies which are strategically computed using distinctive
features. These homographies are computed using RANSAC
[14] which reduces the effects of outliers. Distinctive features
combined with multiple homographies yield almost fully accu-
rate tracking. Assuming motion continuity that exists in typical
navigational-type videos, we maintain the multihomographies
as the states of a set of Kalman filters and thereby avoid the need
of full feature detection and matching for every frame pair. This
gives us a large computational advantage. A major contribution
of this paper is the use of a combination of distinctive and
nondistinctive features in a multihomographic global motion
model. We also propose a scheme of illumination-invariant
motion refinement and experimentally show that it is advan-
tageous. As a result, we provide a solution to the indoor feature
tracking problem without using artificial landmarks. We com-
pare our work with existing approaches in the following section.

A. Related Work

Feature tracking refers to locating a given point in one
image with the corresponding point in another image and has
applications in autonomous mobile robot navigation systems,
3-D modeling from images, cinema postproduction, etc. There
are quite a number of approaches that use computer vision
techniques for feature tracking. Some approaches use a video
sequence acquired using an onboard camera and perform 3-D
reconstruction. For example, Royer et al. [15] track Harris cor-
ners in recorded video. They use these Harris feature matches
across the key frames and perform an offline hierarchical bundle
adjustment in turn to come up with accurate robot localization
and 3-D reconstruction. Mouragnon et al. [2] extend the work
of Royer et al. by using a fast local bundle adjustment along
with the idea of key frames. The first frame is the first key
frame. Subsequent key frames are selected as far from each
other as possible such that a minimum number of Harris
matches is maintained. This helps them in achieving the real-
time requirements of localization. In other words, they perform
full structure from motion only after several frames. We also
make use of this idea to improve the speed of our algorithm.

Nistér et al. [13] report a system using only visual input.
Their system is able to perform a motion estimation of a
stereo or monocular head. They detect Harris corners in each
frame and match them between frame pairs. For the sake of
speed, they compute the Harris corners using less-expensive
techniques. For feature matching (what we call motion refine-
ment in our system), they use NCC within a disparity window.

The use of such a disparity window encodes loose geometric
constraints and thus requires the motion to be slow. Since
motion models (camera poses) are already computed, they
can influence the feature association with trajectories. Their
system, therefore, belongs to the category of 2-D–3-D trackers,
as it tracks the feature positions in 3-D space based on the
corresponding 2-D image features. Since we choose to track in
a 2-D–2-D fashion, we avoid such camera pose computations.
Therefore, we conjecture that our system is able to handle more
complicated motion trajectories.

One of the most widely used trackers is the KLT tracker
developed by Kanade, Lucas, Tomasi, and Shi [16]–[18]. This
tacker is the basis for many other trackers as well. KLT tracks
features by minimizing the dissimilarity between the corre-
sponding patches [sum of squared differences (SSD)] using an
iterative scheme. Many improvements to this tracker have been
proposed. Jin et al. [19] propose modifications to handle affine
deformations in illumination using a hypothesis verification
framework. Fusiello et al. [20] propose an outlier rejection
scheme. We use a basic local-optimization approach similar
to that of the KLT in an affine illumination-invariant manner.
Ours does not need an iterative scheme in practice, which is
computationally advantageous. Since we rely on RANSAC to
reject outliers in our multihomography computation stage, our
system is tolerant of outliers. Another disadvantage in KLT-
like trackers is the absence of a global motion model. This can
lead such algorithms to local minima created by incorrect tracks
(see Fig. 15).

None of the aforementioned attempts have exploited the
ability of a multihomographic global motion model to constrain
the tracks of a large number of features. Since we employ such a
model, we are able to eliminate false tracks and perform robust
tracking. These motion models are computed using distinctive
features and are used to track both distinctive and nondistinctive
features. As a result of this combination, we can achieve robust
and efficient tracking.

We start the discussion with an outline on distinctive and
nondistinctive features in Section II. Then, we justify our
selection of Harris, difference of Guassians (DOG), and SIFT
features for our work. We then present our multihomography
computation scheme in Section III. Section IV describes our
local-optimization-based motion refinement. In Section V, we
present results to show the performance of our tracker, and we
conclude this paper in Section VI.

II. FEATURES AND DETECTION

We indicated in Section I that our feature tracker robustly
detects and tracks features. One of the reasons for robustness
is the combination of distinctive features with nondistinctive
features. Here, we define robustness as the ability to accurately
track features across all image frames without being deceived
by false matches. Features need to be detected and described
using a local neighborhood descriptor. Our descriptors are
SIFT descriptors, and we match them across frames to com-
pute the homographies. As a result, we can match a host of
nondistinctive features based on these homographies. We use
distinctive and nondistinctive features at two different stages
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of our algorithm: distinctive features in the multihomographic
motion model computation (Section III) and nondistinctive
features in the motion refinement stage (Section IV). This
section introduces the notion of distinctiveness and shows how
the features are computed.

A. Distinctive Versus Nondistinctive Features

Distinctiveness is the main criterion for selecting the type
among the intensity-based interest points. For example, Harris
corners [21] are nondistinctive features, and SIFT features [22]
are distinctive. The size of the neighborhood captured by the
feature descriptor and the amount of distillation done with the
information within this neighborhood determine the distinctive-
ness. For example, the Harris detector [21] declares points with
intensity varying significantly in two orthogonal directions as
interest points. We will describe this in Section II-C. Although
a large window is selected, the high distillation of information
does not produce a distinctive feature. However, SIFT and
its variants store the information of intensities (gradients in
particular) in a large vector (128-D vector in SIFT), giving rise
to highly distinctive features.

We have categorized features using the notion of distinc-
tiveness. However, this categorization may be seen in another
angle. In this point of view, what we identified as nondistinctive
features are mere interest points which have the potential of
being repeatedly detected. An example is a character in a
textbook. This gives us a good feature to track but does not
give a method of finding the same feature. The method of
finding the features in subsequent images is by collecting all
the features that match the criterion and comparing against
a descriptor already evaluated at the corresponding feature in
the first image. This descriptor–feature pair is what we called
a distinctive feature in our earlier classification. In this light,
our attempt of combining distinctive and nondistinctive features
amounts to using the matches of the descriptors of a few interest
points to locate the matches for many interest points. This is
sensible since the computation of a descriptor is expensive.

B. SIFT Features

We use SIFT features [22], [23] as our distinctive features.
Automatic scale selection by scale-space extrema detection
(see [24] for details) is what drives the interest point iden-
tification in SIFT. These “good” features [18] are called key
points. Once the key points are identified, the accurate location
and scale are determined. The next step is the orientation
assignment. Finally, a local image-gradient-based descriptor, a
128-D vector, is calculated.

Given any continuous signal f : R
D → R, its linear scale-

space representation [24], [25] L : R
D × R+ → R is equiv-

alent to the convolution of the function (image) f(x) with
Gaussian kernels g(x;σ) of varying width σ

L(x;σ) = g(x;σ) ∗ f(x) (1)

where g : R
D → R is given by

g(x;σ) =
1

(2πσ2)D/2
exp

(
−x2

1 + · · · + x2
D

2σ2

)
(2)

and x = [x1, . . . , xD]T. In SIFT, local extrema detection in the
stacked DOG images yield interest (key) points. Once the inter-
est points are found, local gradients are distilled into histograms
in order to compute the descriptors. This gives rise to the pre-
viously mentioned 128-D descriptor. This vector is normalized
to unit length to suppress the effects of illumination changes.

C. Nondistinctive Features

We use DOG extrema and Harris and Stephens [21] corners
as our nondistinctive features. We mentioned DOG features in
Section II-B. Harris corners can be computed quickly [2], [13]
using the second moment matrix. The multiscale version of the
second moment matrix is given by [26]

μ(x, σI , σD)=σ2
Dg(x;σI)∗

[
L2

x(x, σD) LxLy(x, σD)
LxLy(x, σD) L2

y(x, σD)

]
.

(3)

Harris measure is

cornerness = det μ(x, σI , σD) − α trace2μ(x, σI , σD) (4)

where α ∈ [0.04, 0.15], σI = γ × σD, and γ ∈ [
√

2, 2], typi-
cally. A point is declared an interest point if cornerness passes
the Harris threshold and if it is a local maximum.

In summary, we use SIFT features (i.e., a part of DOG
extrema combined with the SIFT descriptors) as our distinctive
features and DOG extrema and Harris corners as our nondis-
tinctive features. As a result, we have a selected number of dis-
tinctive features and a large number of nondistinctive features.

III. MULTIHOMOGRAPHIC FEATURE MATCHING

In Section II, we outlined the existing features and detectors.
For any of these features, matching is trivial if the image
patches are not distorted. However, the appearances of image
patches change depending on the camera position and parame-
ters. Therefore, image patches used for feature matching are
warped before they can be matched. Warping is done depending
on the motion model. The motion model defines how a pixel
in one image is related to another. Commonly used motion
models are translational and affine. These models can be used
at two different levels: local or global. For example, Shi and
Tomasi [18] use a local affine model for matching and an
implicit global translational model for tracking. In the trans-
lational model, pixels are assumed to undergo a uniform 2-D
translation. The more useful affine model assumes rotation
about the normal to the image plane and anisotopic scaling
in addition to translation. In our system, we assume the more
general projective motion model, where line parallelism is not
preserved [27]. This is an important property in indoor images
because of the presence of many planes (walls, ceiling, floor,
furniture, etc.), some orthogonal to each other. As a result, the
projection cannot be approximated by a global affine transfor-
mation. Therefore, we need to use projective transformations,
one per plane (Fig. 2). We calculate each of these projective
transformations as a planar homography, which is described in
Section III-A. Although a homography transforms the features
in the first image to the very vicinity of the features in the
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Fig. 2. Homographies for a scene with two major planes. Scene contains two
major planes (ignoring the sky and grass). Feature motion using the first (H1)
and second (H2) homographies shows that one homography is appropriate for
only one plane. (a) shows the motion in the first image using H1. (b) shows the
same motion in the second image. (c) and (d) are for H2. Notice the motion of
features on the down sprouts of the gutter. [Cross (+)] Feature in the first image.
[Circle (◦)] Homography-predicted feature in the second image. [Square (�)]
NCC match in the second image. (a) First image H1. (b) Second image H1.
(c) First image H2. (d) Second image H2.

second image, an exact mapping is not possible. This is due
to the fact that features encountered in indoor scenes may not
always lie in perfect planes. Therefore, a planar homography
cannot capture the exact motion. However, the homography
mapping is close enough, and it is not unrealistic to carry
out an NCC-like local-optimization matching at this stage. We
describe this motion refinement process in Section IV. After
refinement, the resulting matches are accurate.

A. Homographies

Homography calculation is an important step in our system.
In relation to images, a homography is a projective transforma-
tion that projects each point xi on one image I to x′

i on another
I ′. In other words, if we consider a set of point correspondences
xi ↔ x′

i, the problem is to compute the 3 × 3 matrix H such that
Hxi = x′

i for each i [27]. This transformation has 8 degrees
of freedom. Since a point correspondence provides two con-
straints, four such correspondences are sufficient to compute H.

The aforementioned homography calculation process has to
be done within RANSAC to eliminate the outliers. In order
to use RANSAC, we need to pick a set of points at random
called the random sample. We choose minimal sampling (four
matches). We do sampling inspired by the guided maximum
likelihood estimation by sampling consensus [28] based on the
scores available in the SIFT matching. This score is based on
the Euclidean distance between the SIFT vectors (Section II-B)
of the two matching features in question. We rank the fea-
ture matches in the increasing order of this distance and pick
matches with low scores first. A different method of computing
motion models for piecewise planar scenes is by propagating
the local affine transformations [29], [30] estimated in the

affine covariant feature computation [26]. Algorithm 1 is the
homography within RANSAC algorithm. The objective is to
compute a homography based on a sample that has a good
support (consensus) c. We approximate the inlier fraction by
α = c/n where n is the number of matching pairs. Then, we can
update the parameter k representing the number of iterations.

Algorithm 1 Homography within RANSAC
Require n number of matching pairs.

1: Set max_trials.
2: Initialize k with a large value (e.g., 10 000).
3: Initialize variables d ← 0, trial ← 0.
4: Initialize probability of seeing only bad samples z

e.g., 0.9.
5: Initialize maximum consensus cm ← 0.
6: while k > d and trial > max_trials do

7: Initialize consensus c ← 0.
8: trial ← trial + 1.
9: Pick four point pairs using guided sampling.
10: Calculate H.
11: Find c ( transfer error < λ, e.g., 1.1).
12: if c > cm then

13: cm ← c.
14: Store H (best H found until now).
15: α ← c/n.
16: k ← log z/(log(1 − α4)).
17: d ← d + 1.

18: end if
19: end while

Algorithm 1 enables us to calculate the homography for
a plane in two images. Transfer error is the criterion for
declaring whether a point pair belongs to the consensus or
not. Fig. 3 shows the accuracy of our homography calculation
where image patches are transformed using these computed
homographies.

There are two more points that we need to mention: First,
our approach of computing a single homography is using
RANSAC to find the initial model and consensus and then using
a least squares computation. Torr and Murray [31] show that
RANSAC-like random sampling robust estimators followed by
expectation maximization (EM) estimators give the best results
for computing motion models. However, we do not use an
EM-like optimization, but stop after the least squares solution,
favoring speed. Second, clustered outliers are a known weak-
ness of RANSAC. Some outliers may group in a set of points
which can be described by a homography or a degenerate ver-
sion of it. This is a limitation of our motion model computation
that needs to be investigated.

B. Multiple Homographies as Motion Segmentation

A single homography algorithm fails when there are several
significantly different planes in the image, making a single
homography extremely inappropriate as the motion model.
For example, Fig. 2 shows two images of a scene with two
major planes with scattered features (ignoring sky and grass).
The feature transformation done using the first and second
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Fig. 3. Accuracy of homography calculation with first and fourth images in
the Graffiti sequence. Row 1 is the original pair of images. Row 2 shows the
square patch of the eye area of the first image, the homography-predicted region
in fourth image, and the back-projected (BP) patch. Row 3 shows the same for
the chicken’s eye. Patches in image 1 and the BP patch are almost identical.
This shows that our homography calculation is correct. (a) Image 1. (b) Image 4.
(c) In image 1. (d) In image 4. (e) BP. (f) In image 1. (g) In image 4. (h) BP.

homographies is shown: The first corresponds to the features
on the wall in the right half, and the second corresponds to the
features on the wall in the left half. This shows that a homogra-
phy could model only one plane. The solution to this problem is
to estimate more than one homography representing the major
motion planes. Here, motion segmentation literature helps us.

The problem that we have is clustering the points that con-
form to a single motion model (a homography) among many
and accurately computing these motion models, without know-
ing the exact number of motion models (number of planes in our
case). In other words, we have to simultaneously estimate the
motion models and cluster the feature points. We can explain
this process in terms of Torr’s geometric motion segmentation
and model selection concept [32]. In this work, Torr gives a
general automatic motion segmentation and grouping algorithm
which determines the number of motions in the scene, optimally
selects the motion models for these different motions, and
optimally computes the parameters of the motion models. The
objective is maximizing the probability of the interpretation
given the data. The log-likelihood of the mixture model of
parameters is maximized using the EM algorithm. Torr selects
the motion models based on the geometric robust information
criteria, which are a combination of the error, dimension,
and number of parameters in the model. In his method, the
dimensions of the motion models can differ from each other. In
our method, however, since we tailor our system for piecewise
planar scenes (indoors), homographies are the only type of

Fig. 4. Consensuses of two homographies. Rows 1 and 2 show the SIFT
feature matches that give rise to consensuses (in RANSAC) corresponding
to two homographies. Shown in row 1 is the consensus of homography
corresponding to the left wall, and row 2 shows the same for the right wall
(best viewed in color). (a) Consensus: Left wall. (b) Consensus: Right wall.

motion models. Therefore, we are not burdened with having
to select motion models. However, determining the number of
such motion models and robustly computing the parameters of
each motion model are still unresolved.

When features supposedly conform to multiple motion mod-
els, the usual approach is to iterate between a model computa-
tion and subtraction of features. This enables the inclusion of a
robust motion model computation like RANSAC. Torr [32] uses
this in his geometric motion segmentation and model selection.
Fitzgibbon and Zisserman also use this in their multibody struc-
ture and motion computation [33].1 This is exactly the iteration
between the dominant motion computation and data subtraction
used by Rothganger et al. [35]. The number of motion models
is determined automatically due to the termination criteria.
When the number of matches remaining is too few, the iteration
between dominant motion model computation and data subtrac-
tion terminates. Based on these, it is possible to calculate the
first homography, subtract the consensus (mask the consensus),
and calculate a second homography. When the consensus is
masked, it cannot participate in calculating a new homogra-
phy. Consequently, we can compute multiple homographies by
masking the previous consensuses and reusing Algorithm 1
repetitively. Fig. 4 shows the consensuses corresponding to the
left and right walls of the Wadham sequence we considered
in Fig. 2. We also use the termination criteria of too few
remaining matches, along with a predefined maximum number
of homographies. Algorithm 2 summarizes this.

When we have the homographies, it is possible to determine
the motion of a given pixel depending on the homography
attached to its closest neighbors in consensuses. Let us call
this the closest homography. We do this using the k-nearest

1Reference [34] is a different residual-distribution-based approach.
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Fig. 5. Closest homography using KNN. First and third columns show,
using color tints, the pixels closest to neighbors in consensuses attached to a
homography, using one- and seven-neighbor methods, respectively. Notice that
the images in the Wadham sequence have two major planes and, therefore, two
homographies. Second and fourth columns show the tints without the images
for clarity. Images were obtained without guided sampling. (a) One-neighbor
method. (b) Tint only. (c) Seven-neighbor method. (d) Tint only.

Fig. 6. Closest homography using KNN (seven-neighbor method) showing
several homographies. The University of Western Ontario (UWO) images at
the top row have two planes. Wall and corridor images at the bottom two rows
have three and four planes, respectively. See Fig. 5 for details. Images were
obtained without guided sampling. (a) UWO 1. (b) UWO 2. (c) Seven-neighbor
method. (d) Tint. (e) Wall 1. (f) Wall 2. (g) Seven-neighbor method. (h) Tint.
(i) Corridor 1. (j) Corridor 2. (k) Seven-neighbor method. (l) Tint.

neighbors (KNN) algorithm [36]. In Figs. 5 and 6, we show
the closest homography to each pixel using color coding.

Algorithm 2 Multihomographies
Require: n number of matching pairs.

1: Set maximum number of homographies hmax.
2: Set consensus fraction threshold cthresh (e.g., 0.8).
3: Initialize the sum of consensuses s to 0.
4: Initialize mask of size n to unmasked.
5: Initialize number of homographies h to 0.
6: while cthresh > c and hmax > h do

7: Select point pairs that are not masked.
8: Use Algorithm 1 to compute a homography.
9: Find the consensus and increase s.
10: Mask out the consensus by setting the mask of

appropriate point pairs.
11: Set c ← ratio between s and n.
12: Increment h.

13: end while

IV. MOTION REFINEMENT

In Section III, we showed how to compute homographies.
The purpose of this is to find the location in the second image
of a given point in the first image. When homographies are

available, they can be used to match the less distinctive features
by transforming the corresponding patches. This means that
every point in the image, whether an interest point or not, can be
correctly matched if the corresponding homography is known.
In other words, if our argument is correct, we will have a dense
correspondence or optical flow. However, this argument is not
correct.

The flaw in the aforementioned argument is due to the
inability to model a real-world scene using a handful of ho-
mographies. Each planar homography is able to give us only
the approximate location of features in the second image. A
homography matches points on a plane with the transformed
plane in the second image. There are two reasons for this
transformed location error. First, the planes in the indoor scene
are not perfect planes. For example, consider a door and its
knob. Although both may belong to a single homography that
models the whole wall containing the door, the door corners
and the doorknob are not strictly coplanar. Therefore, if the
homography corresponds to the door corners, the transformed
location of the doorknob will not be exact. The second reason
is linked to the first, although more implementation related
than physical. In the homography calculation, we accept every
point that falls within a certain error limit as conforming to
the consensus. Therefore, homography calculation itself may
contribute to the transformed location error.

The solution to the transformed location error is refining the
homography-transformed location depending on the local in-
tensity information. We call this process motion refinement. We
characterize motion refinement in Section IV-A. It is important
to note that such a motion refinement attempt only works for an
interest point. In other words, textureless areas or areas without
bidirectional gradient changes cannot be matched. This is the
reason why interest points are detected in the first image as the
first step.

A. Motion Models and Refinement

As mentioned in Section I, there are different motion models
that describe how features move between two images. Assume
that the first frame is I and the second is I ′, and a point in the
first image is x and the corresponding point in the second image
is x′. With the brightness constancy assumption, we can write

I(x) = I ′ (h(x)) (5)

where h(·) captures the motion and x′ = h(x). In this paper,
motion estimations are only for a set of specific points which
are indeed the interest points. As indicated previously, what
we compute using our homographic motion model h(x) − x
itself is a good approximation of the motion. Due to the reasons
described previously, we need a refined motion estimation. Let
us denote the refined motion estimation by v, assuming that it
is the true motion for notational convenience. If we assume that
the motion can indeed be refined to give the actual value, the
refined motion v 	= h(x) − x in general. Therefore, the motion
refinement problem is, given x in image I and homographic
mapping h(·), to estimate the residual motion vh. Thus

v = h(x) − x + vh. (6)
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Fig. 7. Motion disparity between the homography transformed point and the
actual feature. Point x is a feature in image I , and the corresponding feature in
image I′ is x′. Homographic transformation maps x to h(x) which does not
fall exactly at x′. vh = [vh

x , vh
y ]T is the residual motion to be estimated.

These quantities are shown in Fig. 7. We call this process
“motion refinement,” and one approach of estimating vh is
simple NCC. Since this is expensive, we choose a local-
optimization approach.

B. Local-Optimization Approach

Here, we propose an approach which closely follows the
KLT tracking equation which uses a local-optimization method.
The essence of the method [17], [18] is to choose the motion
parameters that minimize the dissimilarity between two image
patches. Our method differs significantly due to the availability
of the corresponding homography. The homography transforms
the image patch of interest to the very vicinity of the matching
patch in the second image. Our task is to find the smaller
(compared to what KLT would give) motion change that would
further minimize the dissimilarity. In this section, we first derive
the KLT equations as applied to our system and then present our
method, indicating the difference between the two.

1) KLT Tracker: The KLT method defines the dissimilarity
between two feature windows (image patches) as the SSD
over the windows. Feature tracking is essentially finding the
displacement or motion. This motion is defined as the one
that minimizes the SSD. Let us consider two image patches
on two successive images denoted by f0(x) = f(x, t0) and
f1(x) = f(x, t1). x = [x, y]T is the image coordinates vector,
and t0 and t1, t1 > t0, are the time instances. For the correct
motion vector vklt = [vx, vy]T

f(x, t0) = f(x + vklt, t1), x ∈ W (7)

where W is a small feature window. The SSD error over the
window W is given by

E(vklt) =
∫
W

[
f(x + vklt, t1) − f(x, t0)

]2
dx. (8)

KLT attempts to find the correct motion vector by minimiz-
ing E(vklt).

It is possible to emphasize the motion of the central pixels
by using a window function, such as a Gaussian window. For
a Gaussian kernel of width 2w + 1 using the notation from
convolution with the 2-D integration variable τ

E(vklt) =
∫
W

[
f(x + vklt − τ, t1) − f(x, t0)

]2
g(τ)dτ (9)

where g(τ ) = g(τ − w, σI) for a square Gaussian kernel with
standard deviation σI and w = [w,w]T. Let us use the notation
in the following throughout the discussion for clarity of equa-
tions. Therefore, we mean (9) when we write

E(vklt) =
∫
W

[
f(x + vklt, t1) − f(x, t0)

]2
gdx. (10)

By using the Taylor expansion for f(x + vklt, t1), neglecting
the second and higher order terms, and dropping the time
parameter for clarity

E(vklt) ≈
∫
W

[
f1(x) + ∇f1(x)Tvklt − f0(x)

]2

gdx (11)

where

∇f1(x) =
[
∂f1

∂x

∂f1

∂y

]T

(12)

is the image-gradient vector. Differentiating and equating to
zero to minimize, we obtain

Gvklt = e (13)

where

G =
∫
W

∇f1(x)∇f1(x)Tgdx. (14)

G is the 2 × 2 symmetric coefficient matrix. The 2-D vector e
is given by

e = −
∫
W

[
f1(x) − f0(x)

]
∇f1(x)gdx. (15)

vklt can be computed if G is well conditioned. This occurs at
an interest point where there are two dominant gradient direc-
tions resulting in two large eigenvalues. One important point to
notice in (14) is that the gradients need to be calculated in only
one image patch (the second patch f1(x) in the aforementioned
formulation).

2) Homographic Tracker: In the implementation of our
tracker, we use a similar formulation as in Section IV-B1. We
have the homographies available, and our interest points are
defined not only by a location but also by a scale parameter.
The scale parameter ties an interest point to a level in the scale
space. Therefore, using the definition in (1), we represent a
scale-space image as

f(x, σ, t) = L(x;σ). (16)

Now, we can denote two successive patches at the same scale
as f1(x, σ) = f(x, σ, t1) and f0(x, σ) = f(x, σ, t0). Now, as-
sume that a homographic motion model gives

f0h(x, σ) = f0(h3(x), σ). (17)

In fact, the homographic transformation accounts for the
scale change of an interest point window as well. Therefore, it is
sufficient to consider levels of the same scale. Thus, we use the
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same scale level σ for both the patches. If motion refinement vh

is correct

f0h(x, σ) = f1(x + vh, σ), x ∈ W. (18)

Now, we can define the dissimilarity as

E(vh) =
∫
W

[
f1(x + vh) − f0h(x)

]2
gdx. (19)

Using a similar computation as in (13)–(15), we can obtain
the motion vh. We note that the vh

x and vh
y in vector vh are

smaller in magnitude than vklt
x and vklt

y . The relation is

vklt ≈ h(x) − x + vh. (20)

Equation (20) relates the result of the KLT algorithm to our
motion refinement. This assumes that KLT produces the correct
result, i.e., v ≈ vklt, where v is the true motion. One more ad-
vantage of this formulation is that, since under the assumption
of correct homographic transformation, |vh| � |v|, the omis-
sion of higher order terms in the Taylor series can be justified.
This is an important aspect of our formulation. For example, the
optical flow machinery of Papenberg et al. [37] postpones the
linearization to the very end to achieve a highly accurate optical
flow. Although their goal—dense optical flow computation—is
not our goal, the performance of their algorithm clearly shows
that, for an optimization approach that handles large motion to
work, linearization of image functions are strictly to be avoided.
In contrast, we can justify our linearized approach since we
know that our motion |vh| is much smaller that the actual
feature motion.

There is an important computational advantage in the afore-
mentioned asymmetric formulation of motion refinement. It is
asymmetric since the motion refinement vh is only in the argu-
ment of f1(·) in (19). As a result, the computation only needs
gradient ∇f1(x) of f1(x), the untransformed image patch. If
the scale-space gradients are available, which is the case in our
system, gradients need not be recomputed to obtain ∇f1(x).

3) Illumination Invariance: The aforementioned SSD-
based formulation is not invariant with respect to affine
changes in illumination such as αf(x) + β. However, NCC is
invariant. We verify this with an example in Fig. 8 and Table I.
Fig. 8 shows two images taken with two different levels of
exposure (they need not be so for this example). We acquire
two corresponding patches f1 and f0h as we have shown in
Fig. 3. Then, we apply an affine illumination transformation to
f0h and carry out SSD and NCC. Table I shows the values, and
it is clear that NCC is invariant to affine illumination changes.

It is clear from the previous discussion that, in order to
make our local-optimization approach illumination invariant,
we need to consider normalized image patches. However, we
want to avoid recomputing the gradients. Here, we derive the
illumination-invariant formulation of local optimization. Let us
denote the normalized patch of f1(x) by

f̃1(x) =
f1(x) − f̄1

f1
n

, x ∈ W (21)

Fig. 8. Patches for comparing SSD and NCC. Top row shows the two images
considered. Bottom row shows the patches considered. (e) shows the affine-
transformed (in range) version of f0h. See Table I for SSD and NCC values.
(a) First image. (b) Second image. (c) Patch on first f1. (d) Patch f0h.
(e) 0.8f0h + 0.2.

TABLE I
NCC VERSUS SSD

where

f1
n =

√∑
W

(f1(x) − f̄1)2 (22)

is the zero-mean norm of f1(x). Let us denote the normalized
patch of f0h(x) by

f̃0h(x) =
f0h(x) − f̄0h

f0h
n

, x ∈ W (23)

where

f0h
n =

√∑
W

(
f0h(x) − f̄0h

)2
(24)

the zero mean norm of f0h(x). In (21)–(24), f̄1 and f̄0h denote
the means of f1(x) and f0h(x) over W , respectively. The
objective function, similar to (19), is

E(vh) =
∫
W

[
f̃1(x + vhn) − f̃0h(x)

]2

gdx. (25)

Finally, after simplifying, we can get the illumination-
invariant homographic tracking equation

Gvhn = ehn (26)

where G is the same as in (14). The 2-D vector ehn is given by

ehn = −
∫
W

[
f̃1(x) − f̃0h(x)

]
∇f1(x)gdx. (27)
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We can solve (26) for ehn as long as G is well conditioned. If
G is ill conditioned, we do not attempt to solve the equation but
assume that vhn = 0 for speed concerns. To decide whether
G is well conditioned, we simply apply a threshold to the
determinant.2 There is a significant computational advantage
in using this formulation when we recall that the gradients
of the scale-space images are already computed. G in (26) is
computed using these gradients. We can compute ehn in (27)
by simply normalizing the patches extracted from the corre-
sponding scale-space image. This justifies our formulation, in
addition to its illumination invariance.

Algorithm 3 Multihomographic Feature Tracking
This high-level algorithm shows the major procedures that

take place when a frame arrives. Processing is different for a key
frame. Matching obviously needs two frames, and the system
waits until the next frame comes after a key frame. However,
we choose to ignore this in the algorithm for simplicity.

1: key frame ← true.
2: while there is a new frame do

3: if key frame is true then
4: Detect features (e.g., DOG, Harris) and compute

descriptors (SIFT) for the selected.
5: Find matches.
6: Use Algorithm 2 to compute multihomographies

and record the consensuses.
7: Find the closest homography to each feature

using KNN.
8: Refine motion (Section IV-B3); compute NCC

score.
9: if NCC score < NCC threshold then

10: Exit.
11: end if
12: Recompute multihomographies using the same

features used in Step 7.
13: Run least squares homography on each

consensus.
14: Initialize Kalman filter (KF)s (only once if

desired or for every key frame).
15: Correct homographies using KFs.
16: key frame ← false.

17: else
18: Propagate features using associated homo-

graphies (or detect features if desired).
19: Refine motion (Section IV-B3); compute NCC

score.
20: if NCC score < NCC threshold or frame is out-

side a multiple view window then
21: key frame ← true.

22: end if
23: Recompute multihomographies using the consen-

sus of each homography.
24: Run least squares homography on each

consensus.
25: Correct homographies using KFs.

2We choose to avoid eigenvalue ratio computation to estimate the condition
numbers [38].

TABLE II
SYSTEM PARAMETERS

TABLE III
NCC COMPARISON FOR ILLUMINATION INVARIANCE

26: end if
27: Initialize or augment tracks.

28: end while

We maintain the multihomographies within KFs, using the
standard KF. For each homography, there is a KF. This way, we
are able to reduce the number of times the full feature detection,
matching, and homography computation (full computation) are
carried out. This is possible only if the motion continuity
assumption is valid. When this assumption is violated, the NCC
score makes the system do a full computation. For a key frame
pair, we carry out a full computation. For other pairs, we make
use of the KF maintained homographies. In our work, both the
state and the measurement are the entries of a homography.
Therefore, the state transition matrix is the identity matrix. In
the update stage, we need a measurement. The homography
computed using the point matches after motion refinement acts
as the measurement. Therefore, the measurement matrix is the
identity matrix as well. Our use of the KFs is different from
having all the points as the state of the filter; we only maintain
a few homographies. The two major steps which consume
computational power are the feature detection and matching
steps. The computational complexity of our feature detection
is linear in terms of pixels, and feature matching is quadratic in
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Fig. 9. Graffiti (G) and Leuven (L) images, and histograms showing illumination levels. Note the significant illumination difference between L images.
(a) Image G1. (b) Image G2. (c) Image G3. (d) Image L1. (e) Image L2. (f) Image L6.

terms of the number of features. Therefore, the aforementioned
mechanism helps us speed up the system.

In summary, we make use of a precomputed homography to
transform the window corresponding to an interest point in the
first onto the second image. Experimental evidence shows the
need for illumination-invariant motion estimation that would
refine the homographic motion. We minimize the dissimilarity
of the intensities in an illumination-invariant manner. This gives
a more accurate location, leading to better motion parameters.
The noise performance of this motion refinement shows an
improvement of approximately 10%–20% over the unrefined
(homographic) motion (see Section V). We summarize the
overall procedure in Algorithm 3.

V. RESULTS

In this section, we will show that our tracker effectively
and robustly tracks. We will also compare our tracker with
recent trackers. We will first show the results that establish the
illumination invariance. Then, we will show the performance
of our system with several indoor sequences and an outdoor
sequence. This is followed by a comparison of our system
against SIFT-only tracking and KLT in terms of frame rate,
NCC score, and robustness. We then compare our system with
several recent feature-tracking methods to show that our tracker
achieves robust tracking without fully sacrificing the speed.
Supplementary material and image sequences are available at
http://iris.uwo.ca.

A. System Parameters

We use the values listed in Table II in all our experiments,
unless noted otherwise.

B. Illumination Invariance

We test the illumination invariance by computing the refined
motion with and without illumination invariance. Table III
compares NCC values between patches with different mo-
tion estimation techniques along with corresponding standard
deviation values. Unrefined columns show values just after
homographic transformation without motion refinement. Un-
normalized columns are after motion refinement with unnor-
malized patches. Normalized columns show values after motion

Fig. 10. Noise performance of our illumination-invariant motion refinement.
(Solid line) Our method is approximately 10%–20% better than (dashed line)
unrefined estimation. (a) Graffiti 1 and 3. (b) Leuven 1 and 6.

Fig. 11. Continuous sequence tracking images. Figure shows the first image
of the sequence and the tracks. The camera is moving forward along the corridor
while slightly turning. Tracking a continuous sequence shows good results.
(a) First image. (b) Tracks drawn on first image.

TABLE IV
TRACKING RESULTS

refinement with normalized patches. In the normalized case,
the motion estimation is illumination invariant. The two im-
age pairs are from the Graffiti and Leuven sequences [39]
(see Fig. 9 for the images and their histograms). Graffiti images
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Fig. 12. Tracking with and without motion continuity. Graphs show in terms of NCC values that continuous tracking for a sequence with bad (left—MC
sequence) and good (right—UC sequence) motion continuity. Here, we used a window of nine frames in key framing and an NCC threshold of 0.7. Good NCC
values show that both the cases are handled, with better results for continuous motion case. We also notice that, in spite of the motion discontinuity at frame 7 of
the MC sequence, tracking continues successfully. (a) Discontinuous motion. (b) Continuous motion.

have no noticeable illumination change, but Leuven images do.
In general, results show that homographic motion itself is quite
accurate. Moreover, illumination-invariant motion refinement
(normalized) is advantageous when illumination differences are
present. Performance is comparable (if not better) when there
is no illumination difference. This verifies the utility of our
illumination-invariant motion refinement.

Fig. 10 shows illumination-invariant homographic motion
refinement with unrefined motion in terms of the noise perfor-
mance. We perturb the location of the second patch f1 by a
random (2-D) vector of 0 mean and standard deviation [σ, σ]T.
The figure shows graphs with illumination-invariant motion
refinement and with no motion refinement. We conclude that
our motion refinement is correct and can robustly handle noisy
matches.

C. Continuous Tracking

Fig. 12 shows that, with the introduction of key fram-
ing, our multihomographic tracker can continuously track in
spite of drastic motion discontinuities in terms of the NCC
score and standard deviation. Fig. 12(a) is for the Medical
Center (MC) sequence which has a drastic motion discontinu-
ity, and Fig. 12(b) is for the University College (UC) sequence
(Fig. 11). See Table IV for details about these sequences.
There is a drastic motion discontinuity in MC showing effects
from frame 6. This result shows that, using the NCC score
as a measure of motion discontinuity, we are able to carry
out continuous feature tracking in spite of drastic changes in
motion. We tracked features for the UC sequence with good
motion continuity, and the results show good performance.
Fig. 11 shows the first frame and the feature tracks drawn
on the first frame. Fig. 12(b) shows the good performance
in terms of NCC. On average, there were approximately
200 features.

So long as the scene can be modeled using multihomogra-
phies, our tracker can perform reliably. Therefore, even for a
sequence with moving objects, the tracker should work. We

Fig. 13. Tracking with moving objects. Figure shows the first image of
the sequence and the tracks. Tracking with a moving background and an
object shows good results. (In this portion of the sequence, both the car
and background occupy significant areas.) (a) First image. (b) Last image.
(c) Tracks.

Fig. 14. Representative frames corresponding to the results in Table IV.
(a) Somerville House (SH). (b) Kinesiology Building. (c) Car Video. (d) MC.
(e) UC. (f) Marble Block.

tested our tracker with a car sequence3 in which a rotating
camera tracks a moving car. Fig. 13 shows the first image we
used in the car sequence and the tracks. We tracked, on average,
approximately 100 features over 40 frames. The multiple view
window was 9, and the average NCC score was 0.98. This
shows that our tracker works as expected for scenes with
moving background and objects as long as they are rigid. We
summarize more tracking sequences in Table IV (Fig. 14).

3This was downloaded from http://robotics.stanford.edu/dstavens/cs223b.
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TABLE V
COMPARISONS WITH OTHER WORKS

TABLE VI
COMPARISON WITH SIFT-ONLY TRACKING AND KLT

D. Comparisons

We compare several recent tracking methods in Table V.
When we consider the frame rate, our tracker performs better
than others in the category of robust trackers. The trackers that
show higher frame rates are all nonrobust. They either use a
stereo head or track only a few feature points.

We compare our tracker with KLT and SIFT-only tracking in
Table VI.4 Our frame rates are quite superior than SIFT-only
tracking and reasonable (70% for some cases) compared to the
(affine corrected version) of KLT. KLT can easily get carried
away by local minima. However, our method is not usually
affected this way since it is guided by the global motion models.
We show this in Fig. 15 using the marble block sequence.5

4In our system, we do the motion refinement based on the image patches
from the current and previous frames, and compute the NCC based on these.
However, KLT carries out the local optimization based on the first and current
frames. Therefore, if we report the NCC scores based on the NCC computed
using the previous and current frames, KLT scores low values because that is
not where the optimization is done. Thus, we choose to report NCC scores for
KLT based on the first and current frames.

5This was obtained from http://i21www.ira.uka.de/image_sequences.

Fig. 15. Visual comparison of tracks shows that the proposed method is
robust. The general motion of pixels is approximately from left to right. The
tracks and a zoomed-in portion are shown. SIFT and our method produce
robust tracking. However, for some features, KLT fails, evident from incorrect
tracks (moving upward) in zoomed-in regions. (a) KLT. (b) SIFT. (c) Ours.
(d) KLT—zoomed. (e) SIFT—zoomed. (f) Ours—zoomed.

In summary, our tracker is able to robustly track features in
piecewise planar scenes, with or without moving objects. The
timing performance is reasonable.

VI. CONCLUSION

We proposed a tracker which uses global motion models
strategically computed using distinctive features that guide the
motion of a large number of features. These motion parame-
ters are refined using a local-optimization method to achieve
accurate motion. Our major achievement in this work is es-
tablishing that multihomographic feature tracking is feasible.
While reaching this goal, we developed our robust feature
tracker that we described previously. Proposing a multihomo-
graphic global motion model for feature motion, deriving and
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validating an illumination-invariant local-optimization method
for motion computation and refinement, and using a combi-
nation of distinctive and nondistinctive features are the major
contributions.

Our system performs accurate feature tracking for distinctive
and nondistinctive features, as evidenced by good values. This
is due to our multihomographic motion model and illumination-
invariant motion refinement. We showed that our method is
robust and performs tracking at reasonable frame rates.
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