IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 29, NO. 9, SEPTEMBER 2019

2693

Combined Static and Motion Features for
Deep-Networks-Based Activity
Recognition in Videos

Sameera Ramasinghe™, Member, IEEE, Jathushan Rajasegaran, Student Member, IEEE,
Vinoj Jayasundara, Student Member, IEEE, Kanchana Ranasinghe, Student Member, IEEE,
Ranga Rodrigo, Member, IEEE, and Ajith A. Pasqual, Member, IEEE

Abstract— Activity recognition in videos in a deep-learning
setting—or otherwise—uses both static and pre-computed motion
components. The method of combining the two components, while
keeping the burden on the deep network less, still remains unin-
vestigated. Moreover, it is not clear what the level of contribution
of individual components is, and how to control the contri-
bution. In this paper, we use a combination of convolutional-
neural-network-generated static features and motion features
in the form of motion tubes. We propose three schemas for
combining static and motion components: based on a variance
ratio, principal components, and Cholesky decomposition. The
Cholesky-decomposition-based method allows the control of con-
tributions. The ratio given by variance analysis of static and
motion features matches well with the experimental optimal ratio
used in the Cholesky decomposition-based method. The resulting
activity recognition system is better or on par with the existing
state-of-the-art when tested with three popular data sets. The
findings also enable us to characterize a data set with respect to
its richness in motion information.

Index Terms— Activity recognition, fusing features, convolu-
tional neural networks (CNN), recurrent neural networks (RNN),
long short-term memory (LSTM).

I. INTRODUCTION

UTOMATIC activity recognition in videos is an intensely

researched area in computer vision due to its wide range
of real-world applications in sports, health care, surveillance,
robot vision, and human-computer interaction. Furthermore,
the rapid growth of digital video data demands automatic
classification and indexing of videos. Despite the increased
interest, the state-of-the-art systems are still far from human-
level performance, in contrast to the success in image classifi-
cation [1], [2]. This is partially due to the complex intra-class
variations in videos, some obvious causes being the view point,

Manuscript received February 1, 2017; revised August 2, 2017; accepted
September 21, 2017. Date of publication October 6, 2017; date of current
version September 4, 2019. This work was supported by the National Research
Council of Sri Lanka under Grant 12-018. This paper was recommended by
Associate Editor Y. Li. (Corresponding author: Sameera Ramasinghe.)

The authors are with the Department of Electronic and Telecommunication
Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka (e-mail:
samramasinghe @ gmail.com; brjathu@gmail.com; vinojjayasundara@
gmail.com; kahnchana@gmail.com; ranga@uom.lk; pasqual@ent.mrt.ac.1k).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSVT.2017.2760858

background clutter, high dimensionality of data, lack of large
datasets, and low resolution.

Despite these reasons more-or-less affecting automatic
image classification, it has been quite successful in recent
years, largely owing to the rise of deep learning techniques.
This is not the case in video classification, although deep
learning is starting to be widely applied. Therefore, it is
worthwhile investigating what is holding back video classi-
fication. In this study, we address three key areas: exploiting
the underlying dynamics of sub-events for high-level action
recognition, crafting self-explanatory, independent static and
motion features—in which, motion features should capture
micro-level actions of each actor or object independently, such
as arm or leg movements—, and optimum fusing of static and
motion features for better accuracy.

A complex activity typically comprises several sub activi-
ties. The existing approaches try to classify a video treating it
as a single, high-level activity [3]-[6]. As the action becomes
complex, the behavior and the temporal evolution of its under-
lying sub-events become complicated. For example, cooking
may involve sub-events: cutting, turning on the cooker, and
stirring. It may not always preserve this same lower order for
the same action class. Instead, they may contain a higher-order
temporal relationship among them. For example, turning on
the cooker and cutting may appear in reverse order in another
video in the same class. Therefore, this temporal pattern of
sub-events is not easy to capture through a simple time series
analysis. These patterns can only be identified by observing
many examples, using a system which has an infinite dynamic
response. Therefore, it is important to model this higher-order
temporal progression, and capture temporal dynamics of these
sub-events for better recognition of complex activities.

In contrast to image classification, the information contained
in videos are not in a single domain. Both the motion patterns
of the actors and objects, as well as the static information—
such as, background and still objects that the actors interact
with—are important for determining an action. For example,
the body movements of a group of people fighting may closely
relate to the body movements of a sports event, e.g., wrestling.
In such a case, it is tough to distinguish between the two activ-
ities solely by looking at the motion patterns. Inspecting the

1051-8215 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Moratuwa. Downloaded on July 03,2020 at 10:06:47 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-3574-1592

2694

background setting and objects is crucial in such a scenario.
Therefore, it is necessary to engineer powerful features from
both motion and static domains. In addition, these features
must be complementary, and one feature domain should not
influence the other domain. In other words, they should be
self-explanatory, and mutually exclusive, as much as possible.
Also, these motion features should be able to capture activities
of each actor independently. If so, the distributional properties
of these actions, over short and long durations, can be used to
identify high level actions. In the proposed method, we craft
static and motion features to have this property.

Furthermore, how to optimally combine or fuse these
motion and static descriptors remains a challenge for three
key reasons: both static and motion information provide
cues regarding an action in a video, the contribution ratio
from each domain affects the final recognition accuracy, and
optimum contribution ratio of static and motion information
may depend on the richness of motion information in the
video. The combined descriptor should contain the essence
of both domains, and should not have a negative influence on
each other. Recently, there has been attempts to answer this
question [6], [S]. However, these existing methodologies lack
the insight in to how much this ratio affects the final accuracy,
and has no control over this ratio. One major requirement of
the fusion method is to have a high-level intuitive interpreta-
tion on how much contribution each domain provides to the
final descriptor, and can control the level of contribution. This
ability makes it possible to deeply investigate the optimum
contribution of each domain for a better accuracy. In this study,
we investigate this factor extensively.

In this work, we focus on video activity recognition using
both static and motion information. We address three prob-
lem areas: crafting mutually exclusive static and motion fea-
tures, optimal fusion of the crafted features, and modeling
temporal dynamics of sub-activities for high-level activity
recognition. In order to examine the temporal evolution of
sub-activities subsequently, we create video segments with
constant overlapping durations. Afterwards, we combine static
and motion descriptors to represent each segment. We propose
motion tubes, a dense trajectory [3] based tracking mechanism,
to identify and track candidate moving areas separately. This
enables independent modeling of the activities in each moving
area. In order to capture motion patterns, we use histogram
oriented optic flows (HOOF) [7] inside motion tubes. Then we
apply a bag-of-words (BoW) method on the generated features
to capture the distributional properties of micro actions, such
as body movements, and create high level, discriminative
motion features.

Inspired by the power of object recognition of convolutional
neural networks (CNNs), we create a seven-layer deep CNN,
and pre-train it on the popular ImageNet dataset [8]. After-
wards, we use this trained CNN to create deep features,
to synthesize static descriptors. Then, using a computationally
efficient, yet powerful, mathematical model, we fuse static and
motion feature vectors. We propose three such novel methods
in this paper: based on Cholesky decomposition, variance
ratio of motion and static vectors, and principal components
analysis (PCA). The Cholesky decomposition based model

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 29, NO. 9, SEPTEMBER 2019

provides the ability to precisely control the contribution of
static and motion domains to the final fused descriptor. Using
this intuition, we investigate the optimum contribution of each
domain, experimentally. The variance ratio based method also
provides us this ability, and additionally, lets us obtain the
optimum contribution ratio mathematically. We show that
the optimum contribution ratio obtained experimentally using
the Cholesky based method matches with the ratio obtained
mathematically from the variance based method. Furthermore,
we show that this optimum contribution may vary depending
on the richness of motion information, and affects the final
accuracy significantly.

In order to model the temporal progression of sub events,
we feed the fused vectors to a long short-term mem-
ory (LSTM) network. The LSTM network discovers the under-
lying temporal patterns of the sub events, and classifies high
level actions. We feed the same vectors to a classifier which
does not capture temporal dynamics to show that modeling
temporal progression of sub events indeed contributes for a
better accuracy. We carry out our experiments on the three
popular action data sets, UCF-11 [9], Hollywood2 [10], and
HMDB5SI1 [11].

The key contributions of this paper are as follows:

« We propose an end-to-end system, which extracts both
static and motion information, fuses, and models the
temporal evolution of sub-events, and does action
classification.

« We propose a novel, moving actor and object tracking
mechanism, called motion tubes, which enables the sys-
tem to track each actor or object independently, and
model the motion patterns individually over a long time
period. This allows the system to model actions occurring
in a video in micro level, and use these learned dynamics
at a high level afterwards.

« We propose three novel, simple, and efficient mathe-
matical models for fusing two vectors, in two different
domains, based on Cholesky transformation, variance
ratio of motion and static vectors, and PCA. The first
two methods provide the ability to govern the contri-
bution of each domain for the fused vector precisely
and find the optimum contribution of the two domains,
mathematically or empirically. Using this advantage,
we prove that static and motion information are com-
plementary and vital for activity recognition through
experiments.

o We prove that the final recognition accuracy depends on
the ratio of contribution of static and motion domains.
Also, we show that this optimum ratio depends on the
richness of motion information in the video. Hence,
it is beneficial to exploit this optimum ratio for a better
accuracy.

o We model the underlying temporal evolution of sub-
events for complex activity recognition using an LSTM
network. We experimentally prove that capturing these
dynamics indeed benefits the final accuracy.

With the proposed techniques we outperform the existing

best results for the datasets UCF-11 [9] and Hollywood?2 [10],
and are on par for the dataset HMDBS51 [11].

Authorized licensed use limited to: University of Moratuwa. Downloaded on July 03,2020 at 10:06:47 UTC from IEEE Xplore. Restrictions apply.

RAMASINGHE et al.: COMBINED STATIC AND MOTION FEATURES

II. RELATED WORK

There has not been many approaches in activity recognition,
which highlight the importance of exclusively engineered
static and motion features. Most of the work rely on generating
spatio-temporal interest regions, such as, action tubes [12],
tubelets [13], dense trajectory based methods [14], [15],
spatio-temporal extensions of spatial pyramid pooling [16],
or spatio-temporal low-level features [3], [17]-[21]. Action
tubes [12] is quite similar to our motion tubes, but our motion
candidate regions are chosen based on more powerful dense
trajectories [3] instead of raw optic flows. Also, we employ
a tracking mechanism of each moving area through motion
tubes isolating actions of each actor throughout the video.
This is an extension of the human-actor tracking presented
by Wang [4]. Our static interest regions are independent
from motion, unlike in Gkioxari and Malik [12], where
can extract background scenery information using CNNs, for
action recognition. A common attribute of these methods is
that motion density is the dominant factor for identifying can-
didate regions. In contrast, we treat motion and static features
as two independent domains, and eliminate the dominance
factor.

A few attempts has recently been made on exclusive crafting
and late fusion of motion and static features. Simonyan and
Zisserman [5] first decomposes a video in to spatial and
temporal components based on RGB and optical flow frames.
Then they apply two deep CNNs on these two components
separately to extract spatial and temporal information. Each
network operates mutually exclusively and performs action
classification independently. Afterwards, softmax scores are
coalesced by late fusion.

Work done in Feichtenhofer et al. [22] is also similar.
Instead of late fusion, they fuse the two domains in a convolu-
tional layer. Both these approaches rely explicitly on automatic
feature generation in increasingly abstract layers. While this
has provided promising results on static feature generation,
we argue that motion patterns can be better extracted by hand-
crafted features. This is because temporal dynamics extend to
a longer motion duration unlike spatial variations. It is not
possible to capture and discriminate motion patterns in to
classes by a system which has a smaller temporal support.
There are models which employ 3D convolution [23], [24],
which extends the traditional CNNs into temporal domain.
Ramasinghe and Rodrigo [6] apply CNNs on optic flows,
and Kim et al. [25] on low level hand-crafted inputs (spatio-
temporal outer boundaries volumes), to extract motion fea-
tures. However, even by generating hierarchical features on
top of pixel level features, it is not easy to discriminate
motion classes as the duration extent is short. Also, tracking
and modeling actions of each actor separately in longer time
durations is not possible with these approaches. Our motion
features, on the other hand, are capable of capturing motion
patterns in longer temporal durations. Furthermore, with the
aid of motion tubes our system tracks and models the activities
of each moving area separately.

In the case of work done by Wang et al. [26], their
use of IDT features as motion descriptors and CNN fea-
tures as static descriptors serves as a baseline for our work.

2695

Considering their experiments and observations, we focus
solely on HOOF creation as opposed to multiple different
descriptors for extracting the motion information. In addition,
we look into the extraction of micro actions through our
work. Also with regards to the approach for static and motion
vector fusion, which involves a constant weighing factor, our
work explores alternative approaches with focus on three
different methods used across all experimenting. In addition,
we improve with regards to capturing the temporal evolution of
videos using recurrent neural networks, considering the short-
comings of SVM classifiers in capturing temporal evolutions.

Regarding video evolution, Fernando et al. [27] postulate
a function capable of ordering the frames of a video tem-
porally. They learn a ranking function per video using a
ranking machine and use the learned parameters as a video
descriptor. Several other methodologies, e.g., HMM [28], [29],
CRF-based methods [30], also have been employed in this
aspect. These methods model the video evolution in frame
level. In contrast, attempts for temporal ordering of atomic
events also has been made [31], [32]. Rohrbach er al. [31],
encode transition probabilities of a series of events statistically
with a HMM model. Bhattacharya et al. [32] identify low level
actions using dense trajectories and assign concept identity
probabilities for each action. They apply a LDS on these
generated concept vectors to exploit temporal dynamics of
the low level actions. Li et al. [33] uses simple dynam-
ical systems [34], [35] to create a dictionary of low-level
spatio-temporal attributes. They use these attributes later as
a histogram to represent high level actions. Our method too
follows a similar approach, as we also generate descriptors
for sub-events and then extract temporal progression of these
sub-events. However, instead of a simple statistical model,
which has a finite dynamic response, we use an LSTM
network [36] to capture these dynamics. In action recognition
literature, such models are starting to appear. In Ng et al. [37]
the LSTM network models the dynamics of the CNN activa-
tions, and in Donahue et al. [38], the LSTM network learns the
temporal dynamics of low level features generated by a CNN.

III. METHODOLOGY
A. Overview

This section outlines our approach. The overall methodol-
ogy 1is illustrated in Fig. 1.

Our activity classifier classifies video snippets based on
their descriptors. In order to compute descriptors, initially,
we segment a video into small snippets of 15 frames with a
constant frame overlap. Then we carry out feature construction
pipelining for each of these snippets, as shown in Fig. 1.
We compute features for each snippet that describe both
motion and static domains. For extracting motion features,
we create motion tubes across frames, where we track each
moving area across the frames using “action boxes”. Action
boxes are square regions, which exhibit significant motion
in each frame. We choose candidate areas by first creating
dense trajectories for each frame, and then clustering trajectory
points preceded by a significant amount of pre-processing.
This process is explained in sub-section III-B. These action

Authorized licensed use limited to: University of Moratuwa. Downloaded on July 03,2020 at 10:06:47 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 29, NO. 9, SEPTEMBER 2019

Y

Fusion layer |

A

2696
CNN Static vector
> D»% D »| Addition >
Vi,1
Motion tubes HOOQOFE Motion vector
L & N I»| Bow ||
Q"ﬁ\
Vin
Fig. 1.

LSTM network

—_—
; > — Classification

Overall methodology. The whole process consists of five major steps: (i) segmenting a video (ii) crafting static features, (iii) crafting motion features,

(iv) fusing static and motion features, and (v) capturing temporal evolution of sub events. Static and motion features are independent and complementary.
We generate static features based on a pre-trained CNN and motion features based on motion tubes, and capture the temporal evolution of sub events using

an LSTM network.

boxes create motion tubes by getting linking across the frames.
Then we calculate HOOF [7] features within these motion
tubes and apply a bag-of-features method on these to create a
motion descriptor for each video segment.

For extracting static features we train a deep CNN on
ImageNet (Fig. 2). Then we apply this CNN on the frames
of each video snippet to retrieve deep features—output vector
from the final softmax layer of the CNN—from it. Then we
use these features to create a static descriptor for the video
segment. Afterwards, we combine these motion and static
descriptors using one of the fusion models described in sub-
section III-C.

The system can then represent a video as a vector time
series, C = [cy, Cryy .5 Cr,_], Where n is the number of
segments. Then we apply an LSTM network on these features
and exploit the dynamics of time evolution of the combined
vector. Finally, we classify the dynamics of this time series
and predict actions.

B. Motion Features

This section discusses the detailed methodology of creating
motion features, particularly, “Motion tubes”, “HOOF”, and
“BoW” blocks as illustrated in Fig. 1.

1) Low Level Motion Descriptor: A pixel-level descriptor
is required to identify moving points in the video. Dense
trajectories [3] is a powerful pixel-level algorithm, which
captures and tracks motion across several frames. In this work,
we choose dense trajectories as the low-level descriptor for
capturing raw motion.

2) Clustering: Initially, we create dense trajectories for
every frame in the video. Then in order to isolate each
sub area in a frame which contains significant motion we
apply DBScan clustering on the calculated trajectory points.
Algorithm 1 illustrates our clustering approach. Empirically,
we use 8 and 10 as € and MinPoints parameters respectively.

Despite the presence of many regions which contain motion
in a video, some are neither significant nor descriptive. Those
moving regions can be neglected without loss of performance.

Algorithm 1 DBScan Clustering Algorithm
> Dataset of sub-areas in frame
> Min. no. of points
> Max. cluster radius
> initialize cluster no.

Require: D

Require: M

Require: ¢

I:c<«0

2: for each P € D do do
3: if P is visited then
4 continue

5 end if

6: mark P as visited
7 NeighborPts = GETALLPOINTS(P, €)
8 if size(NeighborPts) < M then

9 mark P as noise

10: else

11: ¢ = next cluster

12: ADDTOCLUSTER(P, NeighborPts, ¢, €, M)
13: end if

14: end for

15: function ADDTOCLUSTER(P, NeighborPts, c, €, M)
16: add P to cluster ¢
17. for doeach point np € NeighborPtsdo

18: if P is not visited then

19: mark np as visited

20: NeighborPts’ = GETALLPOINTS(np, €)

21: if size(NeighborPts) > M then

22: NeighborPts’ <« NeighborPts joined with
NeighborPts

23: end if

24: end if

25: if np is not yet member of any cluster then

26: add np to cluster ¢

27: end if

28: end for

29: end function

30: function GETALLPOINTS(P, €) return all points within
P’s e-neighborhood (including P)

31: end function

Authorized licensed use limited to: University of Moratuwa. Downloaded on July 03,2020 at 10:06:47 UTC from IEEE Xplore. Restrictions apply.

RAMASINGHE et al.: COMBINED STATIC AND MOTION FEATURES

Therefore, after clustering each trajectory point in to cluster
groups non-significant cluster groups are ignored. We do this
in order to prevent the algorithm focusing on small random
moving areas in a video and to limit creation of motion tubes
to areas which are significant and descriptive. Therefore all
the clusters which are not at least 50% the size of the largest
cluster of the frame are discarded.

After identifying the initial candidate clusters for creating
action boxes, further processing is done to each cluster to
ensure that it contains only the important moving areas accord-
ing to Algorithm 2. For each point, the Chebychev distance
from the centroid of the cluster is calculated. We discard the
furthest 20% of the points from the cluster. The reason behind
the choice of Chebychev distance over Euclidean distance is
due to the possibility of obtaining symmetric square shaped
cluster groups as opposed to circular ones. This makes it easier
to track moving areas and create motion tubes.

Algorithm 2 Boundary Noise Removal Algorithm of Clusters

Require: M, > Max. Chebychev dist.

Require: C > Input cluster

1: totalPoints <— points within My of center of C

2: currentPoints < totalPoints

3: while frue do

4: if COUNT(currentPoints) < COUNT(totalPoints) x0.8
then return currentPoints

50 end if

6: My <~ M; —1

7:

8:

currentPoints <— points within My of center of C
end while

After identifying square-shaped interest regions (action
boxes), we represent each of them with a vector,
b = (x,y,r, f), where x and y are the coordinates of the
top left corner of the box, r is the height or width of the box,
and f is the frame number.

3) Motion Tubes: Since our work models the time evolution
of sub activities within a video, we divide each input video V;
into temporal segments, f(V;) = [v;.1, 02, ..., 0], and cre-
ate features for each individual segment separately. Therefore,
after creating the action boxes for each video segment, the
action boxes within a segment v; ; can be represented as,

i) = {lbr,1,1,bi1,2, -5 b1 g,
[b[,2,15 bt,2,2, R bt,2,p]»
""[bl‘,n,labf,l’l,za""bl‘,n,k]} (1)

where b, j x is the k' action box in j'* frame of the " video
segment. Note that the number of action boxes differ from
frame to frame.

Therefore, before linking the action boxes, to create motion
tubes further pre-processing is needed to ensure the same
number of action boxes exist in every frame within a video
segment. Otherwise, different motion tubes could become
joined halfway through the video, and the effort to capture
dynamics of each moving object separately is disturbed.

For this purpose, first we calculate the mean number of
action boxes per frame in each segment. Then we obtain the

2697

rounded down value, N, of the mean number. Afterwards,
we iterate through each frame starting from frame number 1
until we come to a frame W which has N number of
action boxes. Then from frame W we propagate forward and
backward along the frames, either to eliminate or add action
boxes. The procedure is explained below. If the action box
count in a particular frame is larger than the previous frame,
the smallest excess number of action boxes are removed.

In the case where the action box count is lower than the
previous frame, linear regression is used for each x, y and r
value of vector b = (x, y,r, f) up to that frame, in order to
create artificial action boxes until the number of action boxes
matches N.

Note how this processing results in Eq. 1 being transformed
in to Eq. 2, thus verifying that the number of action boxes per
frame is equal for all frames within a video segment.

h(gis) = {[br,1,1, b2, -5 b1 k],
(bi2,1,002,2, .-, bip k],
B [bf,l’l,labf,l’l,za -«-,bt,n,k]} (2)

The following procedure is used to link the action
boxes in consecutive frames. Assume b; k. 1,b; k,2,...,bs k,n and
bt k+1,1,b¢ k41,2 .bs k41,, are action boxes in two consecu-
tive frames at time k and k + 1. Then the following distance
matrix is calculated.

Diy1 Do D3 D
Dy Dy D3 Doy

D= . .) (3)
Dri Diry D3 Dy,

where D; ; is the Euclidean distance between the centroids
of i’" action box in k' frame and j* action box in (k 4 1)*
frame. Then u'" action box at k + 1, and 1" action box at k
are linked, where u is found using,

u:argminj{Dl,j},J:{1,2,...,1} 4)
jelJ

Then the 1% row and the " column are removed from the
distance matrix, and we apply the same process repeatedly
using Eq. 4 to link each of the action boxes at k with k£ + 1.

By this removal process, we avoid combining of motion
tubes half-way through the video segment and keep them
isolated from each other, which is vital for capturing the
dynamics separately for each moving object.

Finally, we create a (z x n)-by-5 matrix M;—z and n
are number-of-frames and number-of-action-boxes-per-frame,
respectively—which encodes all the information of motion
tubes, in a particular video segment i. The rows of M; for
the k' frame is shown in Eq. 5,

k1 xz1 yz1 Iz

k 2 xz2 Y2 T2

M; =)

k n Yz,n
where the columns represent the frame number, action box
number, x coordinate of the top left corner of the action box,

y coordinate of the top left corner of the action box, and the
width/height of the action box, respectively.

Xz,n Tz,n

Authorized licensed use limited to: University of Moratuwa. Downloaded on July 03,2020 at 10:06:47 UTC from IEEE Xplore. Restrictions apply.

2698

4) Histogram Oriented Optic Flows (HOOF): Since each
action box in a particular motion tube may differ in size,
we take R = max(r;), for Vi, where r; is the length of the
i"" action box of the motion tube. Then we redraw the action
boxes around their centroids having width or length as R. After
identifying the k number of motion tubes (k is a variable) for
each video segment v; ,, we calculate the optic flows along
each motion tube using Lucas et. al [39]. After that we create
HOOF [7] for every action box within a motion tube. Each
optic flow vector within a spatio-temporal action box within
a motion tube is binned according to its primary angle from
the horizontal axis and weighted according to its magnitude.
Therefore, all optical flow vectors, z = [x, y]T with direction,
0= tan_l(’)—f) in the range,

7Z'+ b—l<(9< 7r+b ©)
R > 7"

will contribute a weight of \/x2 4 y2 to the sum in bin b,
1 < b < B out of a total of B bins. Finally, the histogram is
normalized. We choose 100 number of bins.

5) Bag of HOOFs: We use a bag of features method to
create a motion descriptor for each video segment. First,
we create a code book for HOOF vectors. 100,000 vectors are
randomly selected from all the HOOF vectors of all the video
segments in all video classes. Then these 100,000 vectors are
clustered using k-means clustering and 1000 cluster heads are
identified. We choose the number of cluster heads as 1000,
because the dimensions of final motion descriptors are needed
to be the same as the static descriptors, which is explained in
section V. Then for each video segment v; ,, a histogram is
calculated as follows.

We calculate,

p= argminj(Tj —hni), J =1{1,2,...,1000} (7)
jeJ

for each k in {1,2,...,1}, where h, is the k™" HOOF
vector of the n'" video segment, and 7 is the jth cluster
head. Then we increment the histogram values as,

Hn(p) = Hn(p) +1 (8)

where H,(p) is the p’h value, 1 < p < 1000, of his-
togram of the n'" video segment vin. After calculating
the histogram vector H, for every video segment v;, this
H = [H\, Hy, ..., H,] is the vector time series, which
encodes the time evolution of motion information in the video.

C. Fusing of Static and Motion Features

This work depends on three factors; both static and motion
information are vital for action recognition, but the final
accuracy depends on the ratio of contribution of each domain,
and the optimum contribution may depend on the richness of
motion information in the video. We derive our fusion models
addressing all these aspects. The three mathematical models
we use to fuse the static and motion vectors are described next.
This sub section relates to the “Fusion layer” block in Fig. 1.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 29, NO. 9, SEPTEMBER 2019

1) Cholesky Transformation Based Method: This derivation
is based on the Cholesky transformation. An abstract version
of Cholesky transformation is described below.

Let P and Q be two random variables of unknown correla-
tion. These random variables can be transformed into two new
random variables (R and S) with a known correlation of p,
where the value of p can be chosen at will. The transformation
can be performed as follows.

AR P P

(10)

Therefore,
Y=P

and

Z=pP+1-p20 (11)

The Cholesky transformation guarantees that the correlation
between the two random variables Y and Z is p.

Based on the above properties of the Cholesky transforma-
tion, we propose the following methodology to fuse the static
and motion vectors.

Let S and M be static and motion vectors, respectively.
Cholesky transformation can be applied to the two vectors
S and M with the correlation value p.

1 0
[Y}: XI:S:| (12)
Z Pl ‘/l—plz M
Y=S5 (13)
Z=piS+,/1-piM (14)

Similarly, the transformation can be applied to M and §
with the correlation value pj.

A 1 0 M

Bl= | il sl o
A=M (16)
B =ppM+,/1-p3S (17)

Again, the Cholesky transformation guarantees the follow-
ing two properties.

1) The correlation between S and Z is pj.

2) The correlation between M and B is ps.

Therefore, if the values of p; and py are chosen in such a
way that they obey the following rule,

p2=+/1-p}

it can be guaranteed that Z = B, VS, M, p1, p>. Hence,
the resultant vector C can be obtained by,

C=Z=8B

(18)

19)

where the correlation between C and S is p; and the correla-
tion between C and M is p;. Here S and M represent the static
and the motion vectors whereas C represents the resultant
vector. This derivation leads us to an important intuition:
by choosing the value of p;, we can choose the degree to
which the static features and the motion features contribute,

Authorized licensed use limited to: University of Moratuwa. Downloaded on July 03,2020 at 10:06:47 UTC from IEEE Xplore. Restrictions apply.

RAMASINGHE et al.: COMBINED STATIC AND MOTION FEATURES

(64,5 x 5,1,2,T,2) (256,3 x 3,1,1,F,) (256,3 x 3,1,1,F,)

2699

(256,3 x 3,1,1, F,2) (256, ., F,_) 1006 1096

| |

|

Soft max

kﬂ

(3,11 x 11,4,0,T,2)

H

N

Full Full

Fig. 2. CNN architecture used for generating static features. The CNN consists of five convolution layers, two fully connected layers, and one softmax layer.
The details of each convolutional layer are provided on top of each layer according to the following format:(number of convolution layers x filter width x
filter height, convolution stride, spatial padding, is Local Response Normalization added, max-pooling factor). Value above fully connected layers indicates

the dimensionality of the layer. We use ReLu as the activation function.

in deriving the resultant vector. In section 4, it is shown,
how this property is used to explore, the optimal contribution
of static and motion domain information for recognizing
actions. The derivation of an optimum ratio between these
would require either a continuous variation of the ratio for
test datasets, or a theoretical derivation of an optimum ratio.
However, we hypothesize that this ratio would depend on
various characteristics of a given dataset (which we explore
over our experiments), and the intention of this study is
towards establishing the existence of an optimum ratio, and
not the derivation of that optimum ratio.

2) Variance Ratio Based Method: The second method
employed to combine the motion and static vectors is based
on a Gaussian probability model. We model each vector as a
histogram. Using the histogram model, the mean and variance
of each vector are calculated in order to fit the two vectors
into Gaussian distributions. The joint Gaussian distribution is
then computed based on this data.

_|:[N—ﬁzslz+lN—mezi|
e

203 20

Gsm(N) = (20)

27 01,0

This computation corresponds to the evaluation line
obtained when equating the two random variables. This eval-
vation line is the diagonal through the origin of the static
vector vs motion vector plot. The combined distribution is
then obtained through this process.

It must be noted that both histograms (corresponding to
static and motion components) do not contain equal infor-
mation. Hence varying the contribution of each histogram
to the resultant distribution is necessary. This requires varying
of the evaluation line which can be achieved through scaling
of the motion and static axes. This scaling process is carried
out by the following matrix.

Oy

_— 0
Scaling matrix = | 75 —g Om Om
Os +0om

We may conclude that higher variance of a component along
one axis reflects lower detail in the model with regards to the
other axis. Considering the motion axis, the contribution of
this vector towards the resultant vector may be defined by
- #4’_’%). A high variance always corresponds to a flatter
histogram containing less detail.

This parameter we derive is significant as it defines the
contribution of each individual motion and static vector pair
independent of explicit terms. Hence the optimum ratio for
combination of motion and static components of a given
dataset can be mathematically evaluated. With regards to the
datasets used for experimenting, 30% of motion vector and
70% of static vector constitute this parameter on average.
This mathematical inference is further verified through the
experiment results in section IV.

Defining new parameters Ny and Ny as follows, we build a
new distribution which is a scaled version of the joint Gaussian
distribution obtained previously.

0,
NS:Ni’”
Om + 0y

Os
Ny=N—
Om + 0y

Finally, we define the following distribution representative
of the combined vector.

o [=g 2pINs — 1IN — gy]
20| 22 20/ 75m

e

Gsm (N) =
20,0/ 2

l—p
(21)

The corresponding mean and variance of this newly com-
puted distribution are denoted by u/, o/ and u),, o, for the
static and motion vector respectively.

3) PCA Based Method: The third fusion method is based on
Principle Component Analysis (PCA). If there are n number
of features in the input vector of the PCA, the output of the
PCA will provide a new set of n features which are orthogonal
and uncorrelated. Also, if output = [ay,a2,...,a,], then
var(a;) > var(ap) > --- > var(a,). Due to the properties
of the PCA, the original set of n features can be represented
precisely using the first k(n > k) principal components of the
output vector, given that the total squared reconstruction error
is minimized.

In other words, the essence of the original n dimensional
dataset is now almost completely represented by the new
k dimensional dataset with a minor data loss. Thus, the
dimension of the dataset is reduced from »n to k.

In our work, the dimensionality of the dataset 7 is 2
(number of feature domains: static and motion). Using PCA
on T, we receive a new set 7, with 2 new features domains.

Authorized licensed use limited to: University of Moratuwa. Downloaded on July 03,2020 at 10:06:47 UTC from IEEE Xplore. Restrictions apply.

2700

PCA component 1 for Youtube PCA component 2 for Youtube

100 |-

% standard deviation
% standard deviation

PCA component 1 for Hollywood PCA component 2 for Hollywood

T T T T T T 3 T T T T T T

% standard deviation

% standard deviation

ol i
I I I I [I I I I I I

0 1,000 2,000 3,000 4,000 5,000 0 1,000 2,000 3,000 4,000 5,000

n n

Fig. 3. Percent standard deviation values for the first and second components
of the PCA. n is the feature vector index.

We need only one new feature domain in the feature space
to represent motion and static domains. Therefore, it is our
aim to extract only the first principal component. In order to
do this, we need to justify that the first principal component
contains a significant majority of the essence of the original
dataset. In other words, only a negligible amount of data is
lost by eliminating the second principal component.

Therefore, we perform PCA on over 15,000 samples of
motion and static vectors and plot the variance percentage
of the total variance explained by the first and the second
principal components respectively, as in figure and figure

It is evident from the figure that the first principal com-
ponent almost always accounts for over 97% of the essence
of the original dataset, except for only a negligible amount
of samples. The lowest percentage registered is approxi-
mately 85%, which is still a significantly high value. Figure 3
shows the percent standard deviation values for the first
and second components of the PCA for the two datasets.

Therefore, by eliminating the second principal component,
only less than 5% of data is lost in average, and hence only the
first principal component can be used to accurately represent
the original dataset.

D. Capturing Temporal Evolution

Our work requires analyzing complex dynamic temporal
patterns in the generated sequences. This sub section relates
to the “LSTM network™ block shown in Fig. 1 used for this
purpose.

In our work, we represent each video as n fixed-length
segments (n differs for videos of different lengths) with
overlapping frames. Each segment is represented with a fused
vector ¢;. Therefore, each video can be represented as a vector
time series.

Now each vector time series could be analyzed using
traditional time series modeling techniques, such as Auto

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 29, NO. 9, SEPTEMBER 2019

Output
gate

> pt

@ Forget gate

AT

f

Xt

Fig. 4. Long short-term memory (LSTM) block cell. Source [40].

Regressive Moving Average, to obtain features or model
parameters that can describe the vector time series. But the
main drawback of these methods is that they model current
values of a series as a function of past values and have finite
dynamic response to time series input. Also, they lack the
ability to grasp the internal state representations of a com-
plex time series. RNNs maintain hidden layers with directed
feedback connections, and hence, have an infinite dynamic
response. While training, it learns internal states of a sequence
and usually performs better in modeling complex dynamic
temporal patterns of long sequences.

However, it is not ideal to train standard RNNs to solve
problems, which require learning of long-term temporal
dependencies. This is because of the vanishing-gradient prob-
lem, which occurs due to the exponential decay of gradient
loss of the function with respect to time.

In practice, LSTM networks typically perform better in such
cases. LSTM networks are a special type of RNN, which
include a “memory cell”, and as the name suggests, it can
maintain a certain state in memory for longer periods of
time. It also has a set of control gates for controlling the
removal or addition of information to the cell state. This
special architecture gives them the ability to capture more
long-term dependencies. First, we revise the operation of an
LSTM network.

The most important structure of an LSTM unit is its
memory cell ¢;, which preserves the state. Basic structure
of an LSTM unit is shown in figure 4. The memory cell is
self-connected, and it has three gates (multiplicative units),
i.e., input gate, forget gate and output gate, which are used
to control how much long range contextual information of a
temporal sequence to store, remove or output.

The detailed activation process of the memory cell and three
gates, as shown in Fig. 4 is illustrated as follows:

i' = o (Wyix" + Wyih' ™' + W™ + b)) (22)
fr=oWex + Wiph™' + Wepe ™ 4 by) (23)
= flef 7 piltanh(Weex' + Wieh' ™'+ b)) (24)
0" = 0 (Waox" + Wioh' ™" + Weoc' ™! + b,) (25)
h' = o' tanh(c") (26)

where W is the connection weight between two units and
o (+) is the sigmoid function.

Authorized licensed use limited to: University of Moratuwa. Downloaded on July 03,2020 at 10:06:47 UTC from IEEE Xplore. Restrictions apply.

RAMASINGHE et al.: COMBINED STATIC AND MOTION FEATURES

Output layer (softmax)

|] LSTM layer

Fig. 5. A simple illustration of the LSTM network. The network consists of
an input layer, a 128-unit LSTM layer with 0.8 dropout, and a fully-connected
softmax output layer.

C1 Cc2 Cc3 Cq B Cn

Fig. 6. The process of feeding fused vectors to the LSTM network.
¢; indicates the fused vector representing the iy, video segment.

Since the LSTM network is used only for capturing the
temporal dynamic patterns between sub actions, one LSTM
layer is enough. Our LSTM network is shown in Fig. 5. The
network consists of an input layer, a 128-unit LSTM layer
with 0.8 dropout, and a fully connected softmax output layer.
As we have a sequence of activities per classification, we use
a many-to-one approach for feeding the fused vectors to the
network, as shown in Fig. 6.

IV. EXPERIMENTS AND RESULTS

This section details our experimental methodology and the
video datasets used. We evaluate our approach on the two
popular datasets UCF-11 and Hollywood2. On both datasets,
we show that our work exceeds the current state-of-the-art
results (Table II). We also vary the contribution of static and
motion features for the calculation of combined vector series
and explore what is optimum contribution from each domain.
We show that optimum contribution may vary depending on
the dataset. We also show that static and motion features
are complementary, and provide vital information about the
actions occurring in a video. We compare our three fusion
models and show that all the methods are better or on par
with existing state-of-the-art. Furthermore, we highlight the
importance of considering the time evolution of sub activities
in order to identify complex events by comparing the results
of LSTM and Random Forest Classification algorithm(which
does not capture the temporal dynamics), when applied on our
features.

A. Datasets

1) Holywood 2 [10]: This consists of 12 classes of human
actions distributed over 1500 video clips: answer phone, drive
car, eat, fight person, get out car, hand shake, hug person, kiss,
run, sit down, sit up, and stand up. The dataset is composed of

2701

TABLE I

DERIVATION OF p VALUES FOR DIFFERENT CONTRIBUTION LEVELS OF
STATIC AND MOTION DOMAINS TO THE FUSED VECTOR

[Contribution to Z [p value [Fusion vector |
80% Motion, 20% Static | +p1 = /1 - p? Z— A4 Lg
p1 = 4p2 pL= _4 VT V17
17
60% Motion, 40% Static | 2p1 = \/1 |, sy L 2 g
2p1 = 3p2 p1 = _3 T Vi3 V13
13
50% Motion, 50% Static | p1 = \/ 1—p? Z— M4 lg
p1 = p2 p1= = V2 V2
N
40% Motion, 60% Static | 5p1=1/1=pF | _ 5 . L 3 g
3p1 = 2p2 p1= 2 T V13 V13
13
80% Motion, 20% Static | 4p1 = 4/1 — p? ! 4
4p1 = p2 p1 :\/117 Z= \/?M+ ﬁs

TABLE I

OVERALL ACCURACY OF UCF-11, HoLLYWOoOD2, AND HMDBS51 FOR
VARYING RATIOS BETWEEN STATIC AND MOTION COMPONENTS. THE
VECTORS ARE FUSED USING CHOLESKY METHOD. RATIOS
ARE INDICATED IN THE FORMAT STATIC:MOTION

[Ratio [[UCF-11[9] [Hollywood2[10][HMDB51-[11]]
100:0 91.8% 56.9% 482%
80:20 96.3% 80.9% 62.25%
60:40 95.3% 73.6% 67.24%
50:50 95.3% 64.9% 58.64%
40:60 93.6% 60.3% 42.48%
20:80 91.8% 51.9% 40.43%

video clips from 69 movies and provides a challenging task,
in automatic action detection.

2) UCF-11 [9]: This consists over 1000 sports and home
videos from YouTube. This dataset contains 11 action classes:
basketball shooting, cycle, dive, golf swing, horse back ride,
soccer juggle, swing, tennis swing, trampoline jump, volleyball
spike, and walk with a dog. Each of the action sets is subdi-
vided into 25 groups sharing similar environment conditions.
This is a challenging dataset with camera jitter, cluttered
backgrounds and variable illumination.

3) HMDB-51 [11]: This dataset consists of 6849 videos
divided into 51 action classes, with each class containing
a minimum of 101 videos. The actions categories can be
grouped in five types: general facial actions like smile, laugh,
chew, and talk; facial actions with object manipulation like
smoke, eat, and drink; general body movements like cartwheel,
clap hands, climb, climb stairs;, body movements with object
interaction like brush hair, catch, draw sword, dribble; and
body movements for human interaction like fencing, hug, kick
someone, kiss. This is also a challenging dataset as the use
of video clips extracted from real-world videos possess the
presence of significant camera/background motion alongside
varying illumination.

B. Contribution of Static and Motion Domains

The derivation done in Cholesky based method for fusing
the static and motion vectors, provides us an insightful intu-
ition: we can control the contribution of motion and static

Authorized licensed use limited to: University of Moratuwa. Downloaded on July 03,2020 at 10:06:47 UTC from IEEE Xplore. Restrictions apply.

2702

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 29, NO. 9, SEPTEMBER 2019

TABLE

I

PER-CLASS ACCURACY FOR DIFFERENT CONTRIBUTION OF STATIC AND MOTION VECTORS FOR UCF-11. THE VECTORS ARE FUSED USING
CHOLESKY METHOD. RATIOS ARE INDICATED IN THE FORMAT STATIC:MOTION. HIGHEST ACCURACY FOR UCF-11 Is
ACHIEVED USING A 80:20 RATIO BETWEEN STATIC AND MOTION VECTORS

[Class [[100:0 [80:20 | 60:40 [50:50 | 40:60 | 20:80 [0:100]
B_shooting || 924% | 96.3% | 92.7% | 963% | 91.3% | 91.9% | 91.3%
Biking 943% | 97.8% | 95.6% | 954% | 954% | 92.6% | 89.5%
Diving 90.3% | 958% | 943% | 943% | 93.1% | 89.6% | 86.2%
G_swinging || 932% | 96.7% | 96.0% | 958% | 93.3% | 92.8% | 90.5%
H_riding 94.0% | 98.0% | 96.6% | 95.6% | 93.1% | 90.2% | 87.2%
S_jugeling || 92.4% | 96.5% | 96.0% | 96.0% | 93.7% | 90.2% | 85.4%
Swinging 89.3% | 943% | 943% | 93.6% | 94.1% | 91.7% | 88.2%
T_swinging || 92.3% | 96.9% | 957% | 94.5% | 94.1% | 93.3% | 90.6%
T jumping || 93.7% | 97.6% | 96.7% | 94.5% | 94.1% | 93.1% | 90.6%
V_spiking 88.2% | 93.4% | 942% | 972% | 94.1% | 93.0% | 89.3%
W_dog 90.2% | 96.7% | 962% | 954% | 93.3% | 91.9% | 87.2%
Accuracy 918% | 96.3% | 953% | 953% | 93.6% | 91.8% | 88.72%

TABLE IV

MAP FOR EACH CLASS FOR DIFFERENT CONTRIBUTION OF STATIC AND MOTION VECTORS TO THE FUSED VECTOR FOR HOLLYWOOD?2.
RATIOS ARE INDICATED IN THE FORMAT STATIC:MOTION. HIGHEST MAP FOR HOLLYWOOD2 IS ACHIEVED USING
A 80:20 RATIO BETWEEN STATIC AND MOTION VECTORS

[Class [100:0 [80:20 [60:40 [50:50 [40:60 [20:80 [0:100 |
AnswerPhone 523% | 76.6% | 49.6% | 42.4% | 382% | 36.6% | 28.2%
DriveCar 54.6% | 981% | 492% | 42.5% | 39.1% | 37.7% | 26.4%
Eat 50.0% | 621% | 55.6% | 53.2% | 53.2% | 50.1% | 40.0%
FightPerson 722% | 943% | 802% | 72.8% | 66.6% | 57.4% | 42.2%
GetOutCar 56.9% | 774% | 562% | 502% | 47.3% | 40.2% | 35.5%
HandShake 422% | 789% | 802% | 72.7% | 64.4% | 50.3% | 42.7%
HugPerson 499% | 771% | 643% | 62.6% | 57.2% | 50.9% | 40.6%
Kiss 499% | 853% | 86.4% | 70.2% | 68.7% | 60.8% | 45.5%
Run 60.2% | 782% | 94.8% | 882% | 823% | 722% | 64.5%
SitDown 80.2% | 86.2% | 91.6% | 80.4% | 76.9% | 67.3% | 56.9%
SitUp 587% | 75.0% | 782% | 702% | 67.4% | 51.8% | 47.2%
StandUp 55.5% | 81.2% | 97.4% | 73.6% | 62.1% | 483% | 32.3%
mAP 56.9% | 80.9% | 73.6% | 64.9% | 60.3% | 51.9% | 41.8%

domains to the fusion vector by varying the p value. The

derivation of p values for different contribution ratios is
illustrated in table I.

Results for these different contribution values for UCF-11
and Hollywood?2 datasets, are shown in table III and table IV.
We use accuracy and mean average precision as perfor-
mance metrics, for UCF-11 and Hollywood2, respectively.
For both datasets, we obtain the optimum contribution ratio
as 80:20 between static and motion vectors. In the case of
HMDB51 dataset, the optimum contribution ration is obtained
as 60:40 between static and motion vectors.

An overview distribution of the overall performance over
different contribution levels, from static and motion domains,
for both datasets is shown in Fig. 7 and Fig. 8. We can
see that the performance change for different contribution
percentages of motion and static domain. Also, the optimum
contribution may change depending on the nature of the action
and richness of motion or static information in the video. For
example, if the motion patterns are indistinguishable across
actions, static information plays a critical role, for determining
the action, and vise versa. The amount of interaction with
objects also may play a key role in determining this ratio.
In Fig. 8 it is evident that for action classes which does not
highly interact with external objects—such as kiss, run,
sitdown, situp, standup handshake—, the optimum

motion:static ratio is 40:60. For other action classes,
which interact with objects, optimum motion:static ratio
is 20:80. This highlights our hypothesis, that being able
to control this contribution explicitly, is vital for an action
recognition system.

C. Mathematical Validation of Optimum Contribution

As it is evident from the results of table III and table IV,
we experimentally obtain the optimum contribution ratio for
the datasets UCF-11 and Holllywood?2 as 80:20. In section III,
in the derivation of the variance ratio based fusion model, we
mathematically obtained values for the optimum contribution
as 70:30 for the same datasets. It should be noted that these
values closely represent the experimental values, and hence,
the results are further verified.

D. Comparison of Fusion Models

The per-class accuracies obtained for each fusion model
is illustrated in table V and table VI. Although all three
methods give impressive results, Cholesky based fusion model
is superior, and has an overall accuracy of 96.3% for UCF-11.
For Hollywood?2 dataset, it achieves a mean average precision
of 80.9%.

Authorized licensed use limited to: University of Moratuwa. Downloaded on July 03,2020 at 10:06:47 UTC from IEEE Xplore. Restrictions apply.

RAMASINGHE et al.: COMBINED STATIC AND MOTION FEATURES

100 T T T

90 |-

Accuracy

| 1 | 1 |

100:0 80:20 60:40 50:50 40:60 20:80 0:100

80 | 1

Contribution level of motion and static domains

—fFF— B shooting
—fF3— Biking
—f}— Diving
—f}— G swinging
—F— Hriding
—F— Sijugeling
Swinging
T swinging
—}— Tjumping
—}— Vspiking
- Wdog

Fig. 7. Accuracy distribution for different contribution levels of motion
and static domains. This figure illustrates that motion:static ratio affects the
accuracy and the optimum contribution depends on the UCF-11 dataset for
each class.

TABLE V
COMPARISON OF FUSION MODELS ON UCF-11 DATASET

[Class [| Cholesky [Variance ratio [PCA |
B_shooting 96.3 % 90.3% 90.6%
Biking 97.8% 90.8% 91.0%
Diving 95.8% 92.3% 89.3%
G_swinging 96.7 % 90.3% 92.3%
H_riding 98.0% 87.4% 88.6%
S_juggling 96.5% 89.7% 92.8%
Swinging 94.3% 90.0% 88.0%
T_swinging 96.9 % 89.4% 93.0%
T_jumping 97.6 % 92.5% 91.0%
V_spiking 93.4% 91.6% 91.7%
W_dog 96.7 % 91.6% 93.4%

[Accuracy [[963% [90.5% [91.1% |

E. Comparison With the State-of-the-Art

Table VII compares our results to state of the art. We use a
motion:static ratio of 20:80 for both “change/HMDB” datasets
to combine the static and motion vectors, since these values
gave the best results. On UCF-11, we significantly outperform
the state of the art Ramasinghe and Rodrigo [6] by 3.2%.
A mean average precision of 80.9% is achieved by our system
for Hollywood2, which outperforms the state-of-the-art by
16.6%. “add here”

Per-action class results, are also compared in table VIII and
table IX. In UCF-11, our method excells in 8 out of 11 classes,
when compared with Wang er al. [3], Ramasinghe and
Rodrigo [6], Lucas et al. [39], and Ikizler ef al. [42].

2703

100

80 - —
> 60 |— —
Q
<
-
j=]

Q
Q
< 40 |- |
20 |- -
o ! il ! 1 ! 1 !
100:0 80:20 60:40 50:50 40:60 20:80 0:100
Contribution level of motion and static domains
—3— AnswerPhone
—FF— DriveCar
457 Eat
—}— FightPerson
—F— GetOutCar
—f3— HandShake
HugPerson
Kiss.
—F— Rm
—f3— SitDown
[sitp
—F— StndUp
Fig. 8. Accuracy distribution for different contribution levels of motion

and static domains. This figure illustrates that motion:static ratio affects the
accuracy and the optimum contribution depends on the Hollywood2 dataset.

TABLE VI
COMPARISON OF FUSION MODELS ON HOLLYWOOD?2 DATASET

[Class [[Cholesky | Variance ratio [PCA |
AnswerPhone 76.6 % 62.4% 67.6%
DriveCar 98.1% 72.8% 70.0%
Eat 62.1% 49.4% 56.5%
FightPerson 94.3% 78.2% 72.6%
GetOutCar 77.4% 46.9% 56.7%
HandShake 78.9% 56.9% 55.6%
HugPerson 77.1% 52.4% 60.6%
Kiss 85.3% 64.0% 66.6%
Run 78.2% 58.3% 54.3%
SitDown 86.2% 72.0% 68.6%
SitUp 75.0% 50.0% 54.7%
StandUp 81.2% 54.4% 50.0%
mAP 80.9% 59.8% 61.1%

In Hollywood2, we calculate the average precision of each
class, and compare with Wang et al. [3], Lucas et al. [39], and
Ullah et al. [47]. We achieve best results in 10 out of 12 classes
in this case.

F. Effectiveness of Capturing Time Evolution

As discussed in earlier sections, complex actions are com-
posed of sub activities preserving a temporal pattern. In this
work, we try to capture those underlying patterns by an LSTM
network. It is interesting to verify whether this strategy has an
impact on the accuracy of the classification. Here we directly
feed the fused vectors to a random forest classifier, which does

Authorized licensed use limited to: University of Moratuwa. Downloaded on July 03,2020 at 10:06:47 UTC from IEEE Xplore. Restrictions apply.

2704

TABLE VII

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 29, NO. 9, SEPTEMBER 2019

COMPARISON OF OUR METHOD WITH STATE-OF-THE-ART METHODS IN THE LITERATURE. STATIC:MOTION RATIOS ARE 80:20 FOR UCF-11 AND
HoOLLYWOOD2, AND 60:40 FOR HMDBS51. THE RESULTS MENTIONED OF OUR SYSTEM ARE THOSE OBTAINED USING THE CHOLESKY METHOD

UCF-11 Hollywood2 HMDB51
Liu er al.[9] 71.2% Vig et al.[41] 59.4% Wang et al.[4] 57.2%
Ikizler-Cinbis er al.[42] | 75.21% Jiang et al.[43] 59.5% | Wang et al.[15] | 65.9%
Wang et al.[3] 84.2% Mathe et al.[44] | 61.0% Zhu et al.[45] 68.2%
Sameera et al.[6] 93.1% Jain et al.[46] 62.5%
Wang et al.[3] 58.3%
Wang et al.[4] 64.3%
[Our method [96.3% [[Our method [80.9% | Our method [67.24% |
TABLE VIII

PER-CLASS ACCURACY COMPARISON WITH STATE-OF-THE-ART ON UCF-11

[Class [[Ours(Cholesky) [KLT[39] [Wang et al.[3] [Ikizler-Cinbis[42] [Ramasinghe et. al.[6]]
B_shooting 96.3% 34.0% 43.0% 48.5% 95.6%
Biking 97.8% 87.6% 91.7% 75.17% 93.1%
Diving 95.8% 99.0 % 99.0 % 95.0% 92.8%
G_swinging 96.7% 95.0% 97.0% 95.0% 95.0%
H_riding 98.0 % 76.0% 85.0% 73.0% 94.3%
S jugeling || 96.5% 65.0% | 76.0% 53.0% 87.8%
S_winging 94.3% 86.0% 88.0% 66.0% 92.4%
T_swinging 96.9 % 71.0% 71.0% 77.0% 94.9%
T_jumping 97.6% 93.0% 94.0% 93.0% 94.0%
V_spiking 93.4% 96.0 % 95.0% 85.0% 93.2%
W_dog 96.7 % 76.4% 87.0% 66.7% 91.4%

[Accuracy || 96.3% [79.0% | 842% [75.2% [93.1%

TABLE IX

PER-CLASS MAP COMPARISON WITH STATE-OF-THE-ART ON HOLLYWOOD2

[Class [Ours [KLT[39] [Wang et al.[3] [Ullah[47] |
AnswerPhone | 76.6% 18.3% 32.6% 25.9%
DriveCar 98.1% | 88.8% 88.0% 85.9%
Eat 62.1% | 73.4% 65.2% 56.4%
FightPerson 94.3% | 74.2% 81.4% 74.9%
GetOutCar 774% | 47.9% 52.7% 44.0%
HandShake 78.9% 18.4% 29.6% 29.7%
HugPerson 771% | 42.6% 54.2% 46.1%
Kiss 853% | 65.0% 65.8% 55.0%
Run 782% | 76.3% 82.1% 69.4%
SitDown 86.2% | 59.0% 62.5% 58.9%
SitUp 75.0% | 27.7% 20.0% 18.4%
StandUp 81.2% | 63.4% 65.2% 57.4%
mAP 80.9% | 54.6% 58.3% 51.8%
100 _ 11 11 100 _ il 1 il L L
> 80 — > 80 —
Q Q
1] 60 |- — 1] 60 |- —
3 Gt
151 40 - 8 40 -
< 20 |- 1< 20 |- |
[S S S NS S O L L
RO S AR SR o o & IS SR P S S e R P AR B
@7‘cc N (,;*‘\\& $ ¥ < ,\:‘“& d& A?Qy ¢ &@@8 o Q\w?s = \x§$’ & R ¢
Action Classes v Action Classes
|:||:| LST™M |:||:| LSTM
D [Random Forest D [Random Forest
Fig. 9. Accuracy comparison between Random Forest Classifier and Fig. 10. mAP comparison for Random Forest Classifier and LSTM for

LSTM for UCF-11 dataset. Motion:static ratio of 20:80 is used. Accuracy is
significantly higher when the temporal dynamics of sub events are captured.

not capture sequential dynamic patterns, and compare it with
the results obtained by the LSTM network. The results are
shown in Fig. 9 and Fig. 10.

Hollywood2 dataset. Motion:static ratio of 20:80 is used. mAP is significantly
higher when the temporal dynamics of sub events are captured.

As it is evident from the results in in Fig. 9 and Fig. 10,
LSTM network significantly outperforms the random forest
classifier for both datasets. In Hollywood?2, the LSTM network

Authorized licensed use limited to: University of Moratuwa. Downloaded on July 03,2020 at 10:06:47 UTC from IEEE Xplore. Restrictions apply.

RAMASINGHE et al.: COMBINED STATIC AND MOTION FEATURES

wins by a 14% margin. In UCF-11, the LSTM network wins by
a 12% margin. Therefore, it can be concluded that, exploiting
temporal patterns of sub activities, benefits complex action
classification.

V. CONCLUSION

This paper presents an end-to-end system for action classifi-
cation which operates on both static and motion features. Our
approach relies on deep features, for creating static vectors,
and motion tubes for motion features. Motion tubes are a
novel concept we introduce in this paper which can be used
to track individual actors or objects across frames, and model
micro level actions. We present three novel methods, based on
Cholesky transformation, variance ratio, and PCA, for efficient
combining of features from different domains, which is a vital
requirement in action classification. Cholesky method provides
the power to control the contribution of each domain in exact
numbers, and variance ratio based method mathematically
provides an optimum ratio for contribution. We show that these
mathematical and experimental values agree with each other.
We run experiments to show that the accuracy depends on
the ratio of this contribution, and the optimum contribution of
static and motion domains may vary depending on the richness
of motion information. In short, our work demonstrates how
the action classification accuracy varies with the combination
ratio of static and motion features, while establishing the
existence of an optimum combination ratio for a given test
dataset.

In addition, we note that this variation of optimum ratio
between static and motion feature contribution towards the
final classification accuracy being dependent on the dataset
demonstrates the possibility of this optimum ratio varying
dynamically over time for even a given single video clip.
Thus, based on the temporal variation of motion richness of
any given video clip, the optimum contribution ratio has a
possibility of varying dynamically. We hope to work on this in
future.

Through our experiments we also show that our static and
motion features are complementary, and contribute to the final
result. We also compare our three fusion algorithms, and
show that the Cholesky based method is superior, although
all three of them give impressive results. We also model the
temporal progression of sub-events using an LSTM network.
Experimental results indicate that this is indeed beneficial,
compared to using models which do not capture temporal
dynamics. Comparison of our work with multiple state-of-
the-art algorithms, on the popular datasets, UCF-11, and
Hollywood2, show that our system performs better. The work
on the HMDBS51 dataset shows our system to be on par with
the state-of-the-art.

In the future, it would be interesting to improve the motion
tubes, so that, it can maintain an identity over each actor
object. While it is mostly the case even in the present system,
there is no guarantee. Also, in this work, the emphasis is on
accelerating the per-actor micro action generation, initially
we detect individual objects in first frame, and subsequently
track those along motion tubes in the following frames. In the

2705

future, exploring more powerful methods to describe micro
actions inside motion tubes would be interesting, since it
may increase the distinctiveness of the motion features and
contribute well to the final accuracy.

REFERENCES

[1] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Columbus, OH,
USA, Jun. 2014, pp. 580-587.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., Lake Tahoe, NV, USA, Dec. 2012, pp. 1097-1105.

[3] H. Wang, A. Kléaser, C. Schmid, and C.-L. Liu, “Action recognition by
dense trajectories,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit. (CVPR), Colorado Springs, CO, USA, Jun. 2011, pp. 3169-3176.

[4] H. Wang and C. Schmid, “Action recognition with improved trajecto-
ries,” in Proc. IEEE Int. Conf. Comput. Vis., Sydney, NSW, Australia,
Dec. 2013, pp. 3551-3558.

[5] K. Simonyan and A. Zisserman, “Two-stream convolutional net-
works for action recognition in videos,” in Proc. 28th Annu.
Conf. Neural Inf. Process. Syst.,, Montreal, QC, Canada, Dec. 2014,
pp. 568-576.

[6] S. Ramasinghe and R. Rodrigo, “Action recognition by single
stream convolutional neural networks: An approach using combined
motion and static information,” in Proc. 3rd IAPR Asian Conf.
Pattern Recognit. (ACPR), Kuala Lumpur, Malaysia, Nov. 2015,
pp- 101-105.

[7]1 R. Chaudhry, A. Ravichandran, G. Hager, and R. Vidal, “Histograms of
oriented optical flow and Binet-Cauchy kernels on nonlinear dynamical
systems for the recognition of human actions,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Miami, FL, USA, Jun. 2009,
pp- 1932-1939.

[8] O. Russakovsky et al., “ImageNet large scale visual recognition chal-
lenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211-252, Dec. 2015.

[9] J. Liu, J. Luo, and M. Shah, “Recognizing realistic actions from

videos ‘in the wild,”” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-

nit. (CVPR), Miami, FL, USA, Jun. 2009, pp. 1996-2003.

M. Marszalek, I. Laptev, and C. Schmid, “Actions in context,” in Proc.

IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Miami, FL, USA,

Jun. 2009, pp. 2929-2936.

H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre, “HMDB:

A large video database for human motion recognition,” in Proc. Int.

Conf. Comput. Vis. (ICCV), Nov. 2011, pp. 2556-2563.

G. Gkioxari and J. Malik, “Finding action tubes,” in Proc. IEEE Conf.

Comput. Vis. Pattern Recognit. (CVPR), Boston, MA, USA, Jun. 2015,

pp- 759-768.

M. Jain, J. van Gemert, H. Jégou, P. Bouthemy, and C. G. M. Snoek,

“Action localization with tubelets from motion,” in Proc. IEEE

Conf. Comput. Vis. Pattern Recognit. (CVPR), Columbus, OH, USA,

Jun. 2014, pp. 740-747.

J. C. van Gemert, M. Jain, E. Gati, and C. G. M. Snoek, “APT: Action

localization proposals from dense trajectories,” in Proc. Brit. Mach. Vis.

Conf. (BMVC), vol. 2. Swansea, Wales, Sep. 2015, p. 4.

L. Wang, Y. Qiao, and X. Tang, “Action recognition with trajectory-

pooled deep-convolutional descriptors,” in Proc. CVPR, Boston, MA,

USA, Jun. 2015, pp. 4305-4314.

I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld, “Learning

realistic human actions from movies,” in Proc. IEEE Conf. Comput.

Vis. Pattern Recognit., Anchorage, AL, USA, Jun. 2008, pp. 1-8.

C. Schuldt, I. Laptev, and B. Caputo, “Recognizing human actions:

A local SVM approach,” in Proc. 17th Int. Conf. Pattern Recognit.,

vol. 3. Cambridge, U.K., Aug. 2004, pp. 32-36.

Y. Ke, R. Sukthankar, and M. Hebert, “Efficient visual event detection

using volumetric features,” in Proc. 10th IEEE Int. Conf. Comput.

Vis. (ICCV), vol. 1. Beijing, China, Jan. 2005, pp. 166-173.

E. Shechtman and M. Irani, “Space-time behavior based correlation,” in

Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR),

vol. 1. San Diego, CA, USA, Jun. 2005, pp. 405-412.

A. Klaser, M. Marszatek, and C. Schmid, “A spatio-temporal descriptor

based on 3D-gradients,” in Proc. 19th Brit. Mach. Vis. Conf., Leeds,

U.K., Sep. 2008, pp. 275:1-275:10.

T.-H. Yu, T.-K. Kim, and R. Cipolla, “Real-time action recognition by

spatiotemporal semantic and structural forest,” in Proc. Brit. Mach. Vis.

Conf., vol. 2. Aberystwyth, Wales, Aug. 2010, p. 6.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Authorized licensed use limited to: University of Moratuwa. Downloaded on July 03,2020 at 10:06:47 UTC from IEEE Xplore. Restrictions apply.

2706

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 29, NO. 9, SEPTEMBER 2019

C. Feichtenhofer, A. Pinz and A. Zisserman, “Convolutional two-stream
network fusion for video action recognition,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Las Vegas, NV, USA, 2016,
pp. 1933-1941.

S. Ji, W. Xu, M. Yang, and K. Yu, “3D convolutional neural networks
for human action recognition,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 1, pp. 221-231, Jan. 2013.

D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning
spatiotemporal features with 3D convolutional networks,” in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), Santiago, Chile, Dec. 2015,
pp. 4489-4497.

H.-J. Kim, J. S. Lee, and H.-S. Yang, “Human action recognition using
a modified convolutional neural network,” in Proc. Int. Symp. Neural
Netw., Nanjing, China, Jun. 2007, pp. 715-723.

L. Wang, Y. Qiao, and X. Tang, “Action recognition and detection by
combining motion and appearance features,” in Proc. ECCV, Ziirich,
Switzerland, Sep. 2014.

B. Fernando, E. Gavves, M. J. Oramas, A. Ghodrati, and T. Tuytelaars,
“Modeling video evolution for action recognition,” in Proc. 28th IEEE
Conf. Comput. Vis. Pattern Recognit., Boston, MA, USA, Jun. 2015,
pp. 5378-5387.

Y. Wang and G. Mori, “Hidden part models for human action recogni-
tion: Probabilistic versus max margin,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 33, no. 7, pp. 1310-1323, Jul. 2011.

D. Wu and L. Shao, “Leveraging hierarchical parametric networks for
skeletal joints based action segmentation and recognition,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Columbus, OH, USA,
Jun. 2014, pp. 724-731.

Y. Song, L.-P. Morency, and R. Davis, “Action recognition by hierarchi-
cal sequence summarization,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Portland, OR, USA, Jun. 2013, pp. 3562-3569.

M. Rohrbach, M. Regneri, M. Andriluka, S. Amin, M. Pinkal, and
B. Schiele, “Script data for attribute-based recognition of composite
activities,” in Proc. Eur. Conf. Comput. Vis., Florence, Italy, Oct. 2012,
pp. 144-157.

S. Bhattacharya, M. M. Kalayeh, R. Sukthankar, and M. Shah,
“Recognition of complex events: Exploiting temporal dynamics between
underlying concepts,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit. (CVPR), Columbus, OH, USA, Jun. 2014, pp. 2235-2242.

W. Li, Q. Yu, H. Sawhney, and N. Vasconcelos, “Recognizing activ-
ities via bag of words for attribute dynamics,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Portland, OR, USA, Jun. 2013,
pp. 2587-2594.

E. A. Jackson, Perspectives of Nonlinear Dynamics,
Cambridge, U.K.: CUP Archive, 1992.

T. Kailath, “A view of three decades of linear filtering theory,” IEEE
Trans. Inf. Theory, vol. 20, no. 2, pp. 146-181, Mar. 1974.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735-1780, Nov. 1997.

J. Y-H. Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals,
R. Monga, and G. Toderici, “Beyond short snippets: Deep networks
for video classification,” in Proc. CVPR, Boston, MA, USA, Jun. 2015,
pp. 4694-4702.

J. Donahue et al., “Long-term recurrent convolutional networks for
visual recognition and description,” in Proc. CVPR, Boston, MA, USA,
Jun. 2015, pp. 2625-2634.

B. D. Lucas and T. Kanade, “An iterative image registration technique
with an application to stereo vision,” in Proc. 7th Int. Joint Conf. Artif.,
1981, pp. 674-679.

A. Graves, “Supervised sequence labelling with recurrent neural net-
works,” Ph.D. dissertation, Faculty Comput. Sci., Tech. Univ. Munich,
Munich, Germany, 2008.

E. Vig, M. Dorr, and D. Cox, “Space-variant descriptor sampling for
action recognition based on saliency and eye movements,” in Proc. Eur.
Conf. Comput. Vis., Florence, Italy, Oct. 2012, pp. 84-97.

N. Ikizler-Cinbis and S. Sclaroff, “Object, scene and actions: Combining
multiple features for human action recognition,” in Proc. Eur. Conf.
Comput. Vis., Crete, Greece, Sep. 2010, pp. 494-507.

Y.-G. Jiang, Q. Dai, X. Xue, W. Liu, and C.-W. Ngo, “Trajectory-based
modeling of human actions with motion reference points,” in Proc. Eur.
Conf. Comput. Vis., Florence, Italy, Oct. 2012, pp. 425-438.

S. Mathe and C. Sminchisescu, “Dynamic eye movement datasets and
learnt saliency models for visual action recognition,” in Computer
Vision—ECCYV. Florence, Italy: Springer, Oct. 2012, pp. 842-856.

vol. 1.

[45]

[40]

[47]

Y. Zhu and S. Newsam, “Depth2Action: Exploring embedded depth
for large-scale action recognition,” CoRR, 2016. [Online]. Available:
http://arxiv.org/abs/1608.04339

M. Jain, H. Jégou, and P. Bouthemy, “Better exploiting motion for
better action recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Portland, OR, USA, Jun. 2013, pp. 2555-2562.

M. M. Ullah, S. N. Parizi, and I. Laptev, “Improving bag-of-features
action recognition with non-local cues,” in Proc. Brit. Mach. Vis. Conf.,
vol. 10. Aberystwyth, Wales, Aug. 2010, pp. 1-95.

Sameera Ramasinghe received the B.Sc.Eng.
degree in electronics and telecommunication from
the University of Moratuwa, Sri Lanka, in 2014,
where he is currently pursuing the M.Phil. degree.
He is a co-founder and a research engineer with
ConsientAl, a startup focused on Al technologies.
His current research interests are machine learning
and computer vision.

Jathushan Rajasegaran is currently pursuing the
B.Sc.Eng. degree in electronics and telecommunica-
tion with the University of Moratuwa, Sri Lanka.
His current research interests are machine learning,
big data analysis, and data privacy.

Vinoj Jayasundara is currently pursuing the
B.Sc.Eng. degree (Hons.) in electronics and telecom-
munication with the University of Moratuwa,
Sri Lanka. His current research interests are machine
learning, big data analytics, machine vision, and
activity recognition.

Kanchana Ranasinghe is currently pursuing the
B.Sc.Eng. degree in electronics and telecommuni-
cation with the University of Moratuwa, Sri Lanka.
His current research interests are machine learning,
computer vision, and pattern recognition.

Authorized licensed use limited to: University of Moratuwa. Downloaded on July 03,2020 at 10:06:47 UTC from IEEE Xplore. Restrictions apply.

RAMASINGHE et al.: COMBINED STATIC AND MOTION FEATURES

Ranga Rodrigo received the B.Sc.Eng. degree
(Hons.) from the University of Moratuwa,
Moratuwa, Sri Lanka, in 2001, and the M.E.Sc. and
Ph.D. degrees from Western University, London,
ON, Canada, in 2004 and 2008, respectively.
He has been with the Department of Electronic
and Telecommunication Engineering, the University
of Moratuwa, since 2008, where he is currently
a Senior Lecturer. He is currently involved in
feature tracking, reconstruction, and activity reco-
gnition. His research interests are in the general area
of computer vision.

2707

Ajith A. Pasqual received the B.Sc.Eng. degree
(Hons.) in electronic and telecommunication engi-
neering from the University of Moratuwa, Sri Lanka,
in 1993, and the M.Eng. and Ph.D. degrees in
computer vision from The University of Tokyo
in 1998 and 2001, respectively. He was the former
Head of Department of Electronic and Telecom-
munication Engineering, University of Moratuwa,
where he is currently a Senior Lecturer. He leads
the Reconfigurable Digital Systems Research Group,
University of Moratuwa, which is currently involved
in the area of hardware acceleration, novel architectures for application
specific processors, and SoCs to improve performance and power efficiency.
He is the Founder of the first Semiconductor Startup Company in Sri Lanka
Paraqum Technologies, which is involved in developing high performance
hardware decoder and encoder for the newest Video Compression Standard
H.265/HEVC and network analytics equipment. His primary research interests
are in application processors, machine vision, processor and SoC architectures.

— -

Authorized licensed use limited to: University of Moratuwa. Downloaded on July 03,2020 at 10:06:47 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

