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Abstract

Feature descriptors have enabled feature matching under varying imaging conditions,
while mostly being backed by experimental evidence. In addition to imposing some re-
strictions in imaging conditions needed to ensure matching, extending the existing de-
scriptors is not straightforward due to the lack of sound mathematical bases. In this work,
by using a surface bending versus shape histogram based on the principal curvatures, we
are able to produce a descriptor which is not sensitive to the errors in dominant orienta-
tion assignment. Experimental evaluations show that our descriptor outperforms existing
descriptors in the areas of viewpoint, rotation, scale, zoom, lighting and compression
changes, with the exception of resilience to blur. Further, we apply this descriptor for
accuracy demanding applications such as homography estimation and pose estimation.
The experimental results show significant improvements in estimated homography and
pose in terms of residual error and Sampson distance respectively.

1 Introduction
The task of finding feature correspondences between images is a part of many computer
vision applications. The main advantage of this method is that it uses a small pixel patch
around the interest point to produce the descriptor, unlike region based matching techniques.
This ensures that even if the second image has less in common corresponding to the first
image, correspondences still could be found. Feature point description is basically the task
of describing the region around an interest point which can be a corner or blob in an invariant
or partially invariant manner to viewpoint, rotation, scale, zoom, lighting, compression and
blur, in a much lower dimension space, with respect to the pixel patch around the interest
point [14]. Computation complexity is also a great concern when it comes to descriptor’s
practical usability [23]. Applications of feature descriptors in the literature include wide
baseline matching [18], object recognition [3, 10], texture recognition [8], image retrieval
[12],[19], robot localization [20], video data mining [22] and object category recognition
[2]. Also, in tracking applications, despite the view point changes they can be used for mo-
tion estimation. Feature descriptors, in this context, have made a remarkable contribution to
computer vision.

Kenney et al. [7] describe an axiomatic approach for key point detection which provides
a rigorous explanation of the notion of detection. Unfortunately, descriptor theory is not as
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complete as detector theory, and this has made lot of researchers follow heuristic methods
to come up with better descriptors. Many new descriptors have been formed using different
metrics and methodologies.

In this paper, we describe a new descriptor based on curvature with mathematically sound
argument. We justify that curvature is a more suitable metric, using the property that it does
not depend on the local coordinate frame changes and produces the same value for any co-
ordinate frame due to plane rotation and translation. SIFT [10] descriptor metrics, gradient
magnitude vs gradient angle histograms, are indicated to be inspired from biological vision.
Our choice of the metrics have a more mathematically sound justification, where we con-
sider matching as a 2D-surface (patch taken around the key-point) matching problem. We
also demonstrate that our method is more resilient to noise than SIFT and SURF. Further-
more, we explain why spatial patches are needed, establish and prove a better way to get the
patch around the key point, and explain why a damping window is needed. In this manner,
we give mathematically sound justifications to the steps used in our descriptor. The main
contributions of this work are

• introducing a descriptor with computation complexity on par with SIFT, while outper-
forming other descriptors,

• formulating our descriptor on mathematical reasoning and thus justifying its advan-
tages, and

• empirically showing the superior performance of this descriptor for homography esti-
mation and pose estimation .

2 Related Work

A wide variety of detectors and descriptors [1, 4, 5, 6, 7, 10, 13, 21, 23, 25] have been pro-
posed in the literature, and detailed comparisons have been performed [14, 15]. According
to these, state-of-the-art descriptors which do not use machine learning include descriptors
such as SIFT [10], SURF [1], and GLOH [14]. Techniques that require machine learning
include Ferns [25] and Robust Feature Matching [23]. These may not be well suited for all
applications as the learning phase takes time and are mostly suitable for controlled environ-
ments. Thus, we choose to work on non-machine-learning type features. Based on SIFT,
Moreno et al. [17] describe a method to improve the SIFT descriptor in terms of matching
performance and Grabner et al. [4] describe an efficient way to compute the SIFT descriptor
using integral images [24]. PCA-SIFT [6] claims a more distinctive SIFT-like descriptor, but
was later shown to be not as robust as SIFT [15] and it is computationally expensive. SURF
[1] is inspired by SIFT, and performs as good as SIFT for rotation and image blur, and is
several times faster. Still, SIFT is better when it comes to viewpoint, illumination, scale and
zoom [1]. Miklojczyk et al. [11] describe a way to find affine normalized regions, but, this
is known to be computationally expensive and it is not as good as viewpoint sampling [16].
Our descriptor was inspired by SIFT and SURF, but its formulation steps are mathematically
sound. Furthermore, our descriptor does not employ the technique of viewpoint sampling
proposed by Morel and Yu [16], but rather focuses on moderate projective invariance under
the affine assumption.

Citation
Citation
{Lowe} 2004

Citation
Citation
{Bay, Tuytelaars, and Gool} 2006

Citation
Citation
{Grabner, Grabner, and Bischof} 2006

Citation
Citation
{Harris and Stephens} 1988

Citation
Citation
{Ke and Sukthankar} 2004

Citation
Citation
{Kenney, Zuliani, and Manjunath} 2005

Citation
Citation
{Lowe} 2004

Citation
Citation
{Mikolajczyk and Schmid} 2004

Citation
Citation
{Shokoufandeh, Marsic, and Dickinson} 1999

Citation
Citation
{Taylor, Rosten, and Drummond} 2009

Citation
Citation
{Özuysal, Calonder, Lepetit, and Fua} 2009

Citation
Citation
{Mikolajczyk and Schmid} 2005

Citation
Citation
{Moreels and Perona} 2005

Citation
Citation
{Lowe} 2004

Citation
Citation
{Bay, Tuytelaars, and Gool} 2006

Citation
Citation
{Mikolajczyk and Schmid} 2005

Citation
Citation
{Özuysal, Calonder, Lepetit, and Fua} 2009

Citation
Citation
{Taylor, Rosten, and Drummond} 2009

Citation
Citation
{Moreno, Bernardino, and Victor} 2009

Citation
Citation
{Grabner, Grabner, and Bischof} 2006

Citation
Citation
{Viola and Jones} 2004

Citation
Citation
{Ke and Sukthankar} 2004

Citation
Citation
{Moreels and Perona} 2005

Citation
Citation
{Bay, Tuytelaars, and Gool} 2006

Citation
Citation
{Bay, Tuytelaars, and Gool} 2006

Citation
Citation
{Mikolajczyk, Tuytelaars, Schmid, Zisserman, Matas, Schaffalitzky, Kadir, and Gool} 2005

Citation
Citation
{Morel and Yu} 2009

Citation
Citation
{Morel and Yu} 2009



FARLIN AND RANGA: CURVATURE BASED ROBUST DESCRIPTORS 3

3 Methodology
Stages of feature matching involve finding interest points in a scale space [9], usually a blob
or corner like structure, finding the dominant orientation around the keypoint [10] and, de-
scriptor formation by utilizing the region around the keypoint w.r.t. the dominant orientation
[10].

3.1 Interest Point Detection
Most widely used detectors include Harris [5], Hessian Laplace [11] and determinant of Hes-
sian. Linderberg [9] proposed a way for automatic scale selection, which made it possible
to detect interest points stable both in location and scale. Since good interest point detec-
tors that are robust to scale changes are already available, we focus on the descriptor. For
our test cases we used DoG [10] for all tested feature descriptors to make the comparison
straightforward.

3.2 Interest Point Description
Interest point description has two steps: orientation assignment, and description [14]. Orien-
tation assignment is the stage in which the pixel patch around the interest point in the image
scale-space [10] is chosen with respect to a dominant orientation, invariant under many de-
formations. It is the key step for rotational invariance of the descriptor.

3.2.1 Characterization of a Good Descriptor

An invariant dominant orientation for the grid is needed to make the descriptor rotationally
invariant in the presence of more than one spatial patch for descriptor formation (unless the
spatial patches are polar rings and a rotationally invariant metric such as curvature is used).
Many methods to find the dominant orientation has been proposed including orientation of
the largest eigenvector in Harris [5], maxima in the edge orientation histogram [10], gradi-
ent direction at a very coarse scale and maxima of Haar wavelet response for a rotating arc
[1]. No matter which statistic or method is used to compute the dominant orientation, we
believe, that a proper descriptor design should consider the possibility of misorientation, as
the statistic used is not proven explicitly to be invariant under patch deformations. Misori-
entation makes oriented spatial patches gain new pixels and loose pixels near the corners of
each spatial patch. This happens mostly to spatial patches near the periphery of the patch.
Thus, to reduce the influence of spatial patches near the periphery a damping window is used
(Gaussian window in SIFT), and also this improves the resilience to mis-registration. How-
ever this damping window also serves another purpose. Before coming to that point, let us
investigate what kind of a grid size should be chosen around the patch. SIFT uses a 16×16
pixel patch. We show that the grid width should be proportional to the scale of the key point.
In a signal processing context it is shown that the effective time Td bandwidth Bw product is
lower bounded:

Td ·Bw ≥
1
2
. (1)

Tdmin ·Bwmax = constant. (2)
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Figure 1: An image patch divided in to 36 arc-windows. A grid superimposed on an image
patch, and a grid divided into spatial patches. A Gaussian damping window is overlayed on
each patch. (a) Bending histogram for dominant orientation. (b) Descriptor histogram. (c)
Eight shape classifications and corresponding tan-curve fitted values. a = 3σ is the width
of a spatial patch. Descriptor grid width b = 4. Number of classification bins c = 8. The
gaussian damping window g for descriptor is of variance σ0 = 2. To meet these requirements
and considering extra patches needed in distributing bending among adjacent bins we need
to consider a patch of radius w =

√
2a(b+1)/2+0.5.
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Figure 2: Corresponding signals for the same shape under half the bandwidth of the other.
(a) First signal. (b) Frequency response of first signal. (c) Second signal with double the
width of the first signal. (d) Frequency response of the second signal.

Tdmin1

Tdmin2
=

Bwmax2

Bwmax1
=

σ1

σ2
. (3)

The signal’s observed duration should be increased to represent the same shape in a
much lower bandwidth (1). Figure 2 shows signals with the same shape but different band-
widths. Thus we employ the constraint (2) which can be deduced to (3), since the maximum
bandwidth of a signal is upper bounded by the Gaussian convolution kernel’s bandwidth cor-
responding to its scale, which, in turn, is inversely proportional to σ . Furthermore, the lower
bound of the effective duration ensures that the grid captures the most needful area around
the key point structure. However, it does not guarantee that the window size will always en-
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capsulate exactly the structure of interest; it may capture more than intended. The third use
of the damping window is that it minimizes the influence of this extra captured region. This
can also be thought as minimizing spectral leakage in the frequency domain. Thus, in our
descriptor, we use a grid, with width proportional to the scale, along with a damping window.

Furthermore misorientations that occur due to patch deformation and mis-registration
can be handled by using a rotationally invariant metric, such as principal curvatures. SIFT
uses gradient orientation histogram [10], while SURF uses Haar wavelet responses [1] as
the descriptor metric. In SIFT, significant misorientation causes histogram distortion as the
binning position is dependent on gradient angle w.r.t. the dominant orientation, thus making
binning positions change when an error occurs in the dominant orientation computation. In
SURF, Haar wavelet response error occurs under misorientation as Haar wavelet responses
are not rotationally invariant. In order to counter this we propose to use a histogram metric
which is truly invariant under rotation and translation: Principal curvatures are invariant
under rotation and translation. Furthermore, principal curvatures describe the surface nature
at a point, thus being more representative of the surface. The surface itself can be classified
according to the amount of bending and shape (Figure 3). We use these important properties
of curvatures to formulate a meaningful descriptor.

3.2.2 Orientation Assignment

In differential geometry the eigenvalues of Hessian matrix H are the principal curvatures
λmax,λmin of a surface I(x,y) at any given point. Let ~p be any point in patch S. We introduce
a metric the amount of bending m(~p) based on rotationally invariant principle curvatures as
below

H =

[
Ixx Ixy
Ixy Iyy

]
, H~v = λ~v, m(~p) =

√
λ 2

max +λ 2
min. (4)

We propose to represent the dominant orientation by finding where the maximum bend-
ing of the surface occurs in a sliding arc-window of 30◦ (Figure 1a). We compute this statistic
in a patch S with center (x0,y0) and with radius proportional to scale for the aforementioned
reasons (Figure 1a). Let ~p be any point in patch S and f (~p) be the polar angle of ~p w.r.t
(x0,y0) as shown below.

~p =

[
x
y

]
, S = {~p|(x− x0)

2 +(y− y0)
2 ≤ 3×1.5σ}. (5)

f (~p) = tan−1(y− y0,x− x0), θ0 = 10◦, N = 360/θ0 = 36. (6)

We compute the histogram ho of bending of the surface m(~p) (4), vs. polar angle of
the pixel f (~p) w.r.t. keypoint (x0,y0), multiplied by a Gaussian damping window g(r,1.5σ)
where α,β ,r are used for linear interpolation among adjacent bins, as represented by

α =
f (~p)
θ0

, β = floor(α−0.5), r = (α−β −0.5). (7)

ho(i) = ∑
~p∈S
{m(~p)g(r,1.5σ) [δ (i− (β +N)mod N)(1− r)+δ (i− (β +1)mod N)r]},(8)
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Figure 3: Shape classifications according to parabola (P), hyperbolae (H), corner (C), edge
(E), outward (O) and inward (I). (a) PCO (b) PEO (c) HCO (d) HEO (e) PCI (f) PEI (g)HCI
(h)HEI

Thus, the bending histogram ho(i) is computed where each bin corresponds to the 10◦-
arc’s total bending of the surface under the influence of the Gaussian. Binning is done by
distributing values among adjacent bins by trilinear interpolation (7),(8). Responses for the
30◦-arc with 10◦ sliding is found by creating the final histogram ĥo(i) by summing three
adjacent bins of ho(i) by

ĥo(i) = ∑
j=1,...,3

[ho((i+ j)mod N)], i = 1, ...,N. (9)

In ĥo(i) orientation values are found for the highest peak and those above 75% of the
highest [1, 10], followed by interpolation as in SIFT [10]. Each dominant orientation is used
to find descriptors; as in SIFT, one keypoint may have multiple descriptors [10]. In summary,
a good descriptor is preferably patch based, the grid width being proportional to the scale,
resilient to misorientation due to relying on a metric like curvature which characterizes the
shape of the surface at any point.

3.2.3 Feature Description

There are four steps in our feature description: (1) Computing the rotated, normalized spatial
patch coordinate frame (2) Surface classification for each patch (3) Generating the descriptor
vector and (4) Normalization. We use a 4×4 spatial patch grid for our descriptor, with width
12σ (as shown previously grid width should be proportional to scale) rotated to the dominant
orientation which is handled by normalized rotated coordinates Nx,Ny as shown below where
θ is the computed dominant orientation, (x0,y0) is the key-point and (Nx,Ny) is the spatial
patch location for descriptor bining.

[
Nx
Ny

]
=

1
a

[
cos(θ) sin(θ)
−sin(θ) cos(θ)

][
x− x0
y− y0

]
(10)

For each spatial patch, we create a surface bending m(~p) vs shape histogram D(i, j, :)
(must see Figure 1b,) based on the eight classifications of the surface (must see Figure 3).
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We classify the amount of surface bending according to shapes (Table 1) based on the
ratio of principal curvatures. Each spatial patch produces an eight-element descriptor and all
16 spatial patches produce a 128D descriptor similar to SIFT. Principal curvature max and
min are chosen in an absolute sense to make sure that any point will fall in to one of the
classifications as shown below.

λmax =

{
λ1, |λ1|> |λ2|,
λ2, otherwise. λmin =

{
λ1, |λ1| ≤ |λ2|,
λ2, otherwise. (11)

Table 1: Shape classifications at each pixel: paraboloid (P), hyperboloid (H), edge (E), corner
(C), outward (O), inward (I), K = λmaxλmin and J = λmax/λmin.

Metric P H C E I O
K K > 0 K < 0 - - - -
J - - |J|< 2.41 |J|> 2.41 - -
nt - - - - [π/4 3π/4] [5π/4 7π/4]

Classification of bins is done in continuous linear space for efficiency. As the interval
of curvature ratios that correspond to edges is far bigger than for corners, taking the ratio
of principle curvatures does not provide a smoothly varying metric from edge to corner ,
thus we fit the curvature ratio to a tan curve considering {λmax}× {λmin} cartesian space
(Figure 1c) as shown below

nt = tan−1(λmax,λmin). (12)

Now the classification problem is in linear space for bining. As we use λmax,λmin with
algebraic sign, but max, min are chosen in an absolute sense (11) half the linear space values
retrieved by (12) are not occupied, and only a portion of 180◦ is occupied (see Figure 1c).
Thus, we will not get our intended classification. To prevent this, we normalize nt to be
classified into eight bins (c = 8) spanning 360◦ by

Nt =

{
c(nt−π/4)

π
, nt ≤ 3π/4,

c/2+ c(nt−5π/4)
π

, nt ≤ 7π/4.
(13)

Normalized spatial coordinates for spatial binning could be obtained from (10) while
Nt provides the normalized shape bin. Now, according to Nx,Ny,Nt , the amount of bend-
ing m(~p) multiplied by the Gaussian is binned to the descriptor histogram D(i, j,k) by dis-
tributing among adjacent bins by trilinear interpolation considering that spatial bins are not
circularly buffered and classification bins are circularly buffered. The amount of bending
m(~p) multiplied by the gaussian damping window value g(r,σ0) is binned to descriptor his-
togram D(i, j,k) at location (Nx,Ny,Nt) by distributing among adjacent bins by the following
trilinear interpolation equations

βx = floor(Nx−0.5), βy = floor(Ny−0.5), βt = floor(Nt). (14)
rx = Nx− (βx +0.5), ry = Ny− (βy +0.5), rt = Nt −βt . (15)

H(i,ra,βa) =

 1− ra, i = βa,
ra, i = βa +1,
0, otherwise.

a = x,y or t. (16)
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Let D(i, j,k) be the 4× 4× 8 descriptor where i = 1, ...,4, j = 1, ...,4, k = 1, ...,8.
which is a histogram formed as shown below

D(i, j,k) = ∑
~p∈P
{m(~p) g(r,σ0) H(i,rx,βx) H( j,ry,βy) H(k,rt ,βt)}. (17)

where P is the patch with radius w used to compute the descriptor (see Figure 1.(b)) and
H(i,rx,βx) H( j,ry,βy) H(k,rt ,βt) represent the distribution of the term m(~p) g(r,σ0) (gaus-
sian weighted metric) among adjacent bins with trilinear interpolation. The descriptor D(i, j,k)
is normalized and values greater than 0.1 are clipped and re-normalized for robustness to il-
lumination changes.

4 Experimental Results

4.1 ROC Curves
We evaluate the performance of our descriptor in terms of viewpoint, zoom and rotation,
lighting, compression and blur performance using the Oxford image database [14] which
has structured (S) and textured (T) images. Based on the ground-truth homographies avail-
able with the database, we plotted ROC curves, the number of true positives versus false
alarm rate. It is reasonable to use the number of true positives for comparision as we used
the same detector (DoG) for both SIFT and CUR. In all situations, except blur, our descrip-
tor outperforms SIFT (see Figures 4 and 5). Although the gradient profile is less affected by
blur, the patch surface shape is significantly affected, which causes considerable curvature
distortions. Apparently, this is the reason why our descriptor does not perform as well as
SIFT in the presence of blur.

Table 2 approximately compares GLOH, SURF and CUR with SIFT in terms of recall. Our
descriptor, CUR, outperforms all three descriptors except in the case of blur and zoom and
rotation for a structured scene. SURF performs best in presence of blur and it performs as
well as CUR for zoom and rotation.
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Figure 4: True positives vs false alarm rate curves in the presence of viewpoint (V) change (
20◦–30◦), and zoom and rotation (ZR) (30◦). S: structured T: textured

4.2 Homography Estimation
We evaluate homography estimation in terms of residual error computed by
(||x′−Hx||+ ||x−H−1x′||)/2 where H is the estimated homography and (x,x′) is a corre-
spondence obtained by feature matching. Thus this is a measure that checks how well the
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Figure 5: True positives vs false alarm rate curves in the presence of image blur (B), lighting
(L), and compression changes (C) changes. S: structured, T: textured

Table 2: Approximate improvement and degradation of each descriptor w.r.t. SIFT. +: 0.1
recall improvement −: 0.1 recall degradation 0: a tie. Viewpoint (V), Zoom and Rotation
(ZR), Blur (B), Lighting (L), Compression (C), Structured scene(S) and Textured scene (T).

Descriptor V-S V-T ZR-S ZR-T B-S B-T L C
GLOH + − + 0 0 − 0 0
SURF − −−− +++ ++ + + −− −−
CUR ++ + ++ +++ − −−− 0 +++

descriptor finds correspondences that are compatible with the estimated homography, which
is a reasonable way of comparing when absolute ground truth comparsion is meaningless.
Figure 6.a shows the histogram of number of inlier key-points vs residual error for homog-
raphy estimation for SIFT and CUR.

(a) Homography (b) Pose (c) Example image
pair

Figure 6: Number of inlier key-points vs residual error for homography estimation and num-
ber of inlier key-points vs Sampson distance for pose estimation.

4.3 Pose Estimation

We evaluated pose estimation in terms of first-order geometric error (Sampson distance) by
(x′T Fx)2

(Fx)1
2+(Fx)2

2+(FT x′)1
2
+(FT x′)2

2 . We represent the accuracy by a histogram of number of inlier

key-points vs their Sampson distance as shown by Figure 6.b.
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5 Conclusion
In this paper we presented a novel descriptor based on the amount of surface bending vs
shape histogram w.r.t. a dominant orientation, which is computed using the maximum
amount of bending in an arc-window. Our formulation of the descriptor was based on the
characteristics needed in a good descriptor, namely, the use of spatial patches, use of orien-
tation, resilience to misorientation, grid width being proportional to scale, use of a damp-
ing window, and a rotationally invariant metric such as the curvature. Experimental results
showed that our descriptor, CUR, outperforms all three descriptors SIFT, SURF, and GLOH
in all situations, except in the case of blur and zoom and rotation for a structured scene.
Also the experiments on practical real world applications such as homography estimation
and pose estimation show significant improvements.
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