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Abstract

Image generation from a single image using generative adversarial networks is quite interesting due to the realism of
generated images. However, recent approaches need improvement for such realistic and diverse image generation, when
the global context of the image is important such as in face, animal, and architectural image generation. This is mainly
due to the use of fewer convolutional layers for capturing the patch statistics and, thereby, not being able to capture
global statistics well. The challenge, then, is to preserve the global structure, while retaining the diversity and quality
of image generation. We solve this problem by using attention blocks at selected scales and feeding a random Gaussian
blurred image to the discriminator for training. We use adversarial feedback to make the quality of the generation better.
Our results are visually better than the state-of-the-art, particularly, in generating images that require global context.
The diversity of our image generation, measured using the average standard deviation of pixels, is also better.
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1. Introduction

Generative Adversarial Networks (GANs) are successful
in implicitly learning the underlying statistics of a large
dataset and thus enable generating new samples from the
same distribution [1], [2]. In such GANs, generating good-
quality and diverse images needs a large image dataset.
Recently, SinGAN [3] proposed a hierarchical learning-
based approach for training with a single image. Here,
in each scale, the generator and discriminator with low re-
ceptive fields learn to capture the internal statistics of the
patch distribution of the image. One of the drawbacks of
this method, as the paper itself states, is unrealistic image
results when the global structure of the image is impor-
tant, e.g., in face and animal image generation. The main
reason for unrealistic results is the lack of global structure,
when the images are generated starting from the coarsest
scale. SinGAN can only generate the images without de-
stroying the global structure by feeding the downsampled
version of the real image in less-coarser scales instead of
feeding noise to the coarsest scale. However, this tends to
reduce the diversity in generation.

The level of information that must be captured for the
global structure of the image to produce realistic look-
ing results varies with the input image. For example, the
generated samples from the images with small structures
in the foreground (e.g., balloons in air, flocks of birds)
and natural scenes (e.g., landscapes, foliage) do not need
to maintain its original global structure. In contrast, the
global structure plays a major role in realistic generation
of images of large objects like faces and buildings.

Prior works [3, 4] in single image GAN domain depend

on the receptive field of convolutional layers to incorporate
local information to the network. Increasing the capacity
of the network causes overfitting to the single sample and
looses the diversity. Our main motivation is increasing the
generation quality without degrading the diversity

In this paper, we propose two main strategies for insert-
ing the global context to the network while maintaining
the diversity of the image generation. First is using self-
attention (SA) as a key to control the level of the insertion
of information on the global structure for realistic gener-
ations of all type of images while not sacrificing much in
the diversity. Second is using a random Gaussian kernel to
convolve the real image before feeding it to the discrimina-
tor. This helps to improve the diversity in the generated
images. Using these strategies we are able to generate di-
verse set of images starting from the coarsest scale with
global context. The level of diversity in our results is sig-
nificantly higher than the SinGAN, when we start the gen-
eration from less-coarse scales. In addition, to generate
better reconstructions (in terms of Single Image Fréchet
Inception Distance (SIFID)) we leverage on the concept of
adversarial feedback in our single-image multi-scale net-
work. Realistic images generated through our method are
useful in tasks such as data augmentation [5, 6] and anima-
tion. Moreover, our method does not affect downstream
tasks such as image editing, harmonization, and arbitrary
size generation from the SinGAN architecture.

The main contributions of this work are: (1) propos-
ing a method that retains the global structure in gener-
ated images by using SA, (2) increasing the diversity of
generated images by depriving the discriminator of high
frequency detail by simple random Gaussian smoothing.
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(3) enabling the controllability of the global structure by
carefully choosing where SA is used and by the standard
deviation of the Gaussian kernel. (4) Using adversarial
feedback from previous scales to generate better recon-
structions in a single-image multi-scale network. To the
best of our knowledge, this is the first time, feedback from
the discriminator is utilized under a multi-scale architec-
ture.

1.1. Related Work

The ability of a GAN to generate a sample from a dis-
tribution resembling data resulted in many contributions
in GAN-based image generation [7], [2]. These GANs gen-
erate novel images by learning from a large database of
images, that would have emanated from the same distri-
bution. StackGAN [8] and ProgressiveGAN [9] use pro-
gressively growing architectures to improve the stability
while generating high resolution images. BiGGAN [10]
trains with large number of parameters and a large batch
size on ImageNet dataset to attain high fidelity generation.
Although GANs generate impressive results, the need for
a large dataset, the resulting large training time, dataset
specific nature of the generation are concerns.

As our objective in this work is single-image GAN gen-
eration, here we concentrate on Deep Internal Learn-
ing: Training a deep architecture with a single image for
image specific tasks comes under deep internal learning.
Deep Image Prior (DIP) [11] captures the image statistics
through the structure of the generator network to per-
form image restoration tasks like denoising, inpainiting,
and super-resolution. Here, the network learns to map
random input to the single image sample. In this recon-
struction process, DIP is able to recover the corrected ver-
sion (denoised, inpainted) of the trained sample. Double
DIP [12] extends this idea to decompose a single image into
two with a task-specific mask and regularization. In seg-
mentation, the image is decomposed into foreground and
background with a binary mask. In image dehazing, the
image is decomposed into an airlight map and haze free
image with a transmission map. In ZSSR [13] an image
specific CNN is learned to super resolve an image. It is
trained with high and low resolution pairs from a single
image. KernelGAN [14] proposes a method to extract a
downsampling kernel from a deep linear convolutional gen-
erator and combine with ZSSR to super-resolve an image.
[15] extends the ZSSR concepts to video domain for tem-
poral super resolution tasks. These works establish that
it is possible to learn from patches in a single image for
multiple tasks.

Now, there are prominent approaches for using deep-
internal learning to generate images from a single image,
making the generation process much faster to learn. Spa-
tial GAN uses [16] a fully convolutional generator and
patch discriminator starting from 2D noise to generate an
arbitrary sized texture image from single image. In [17],
the generator generates larger images condition on small
patches from the training image. Here, VGG [18] based

perceptual loss is used alongside with adversarial train-
ing. [19] uses structural noise at three different levels at
local, global, and periodic part at the generator with a
patch discriminator. InGAN [20] learns to remap an image
to different aspect ratios and sizes while maintaining the
same patch distribution by training a GAN based architec-
ture with a multi-scale patch discriminator and a generator
with a non-parametric transformation layer which can also
learn to remap the output to the input using an inverse
transformation. These networks typically map images to
images and are, therefore, constrained to a couple of tasks.
SinGAN, on the other hand, extends this deep internal
learning concept with a hierarchical architecture to train
from single image for multiple purposes. Since SinGAN
only trains with a single image, it only learns statistics
of the patches under its lower receptive field through a
few convolution layers. Having a deep architecture with a
higher receptive field will easily memorize the trained im-
age and generate less diverse outcomes. In our work, we
aim to improve SinGAN by having a controllable global
structure insertion while maintaining the diversity of gen-
eration.

Although regular GANs, generate diversified images due
to the diversity of the training set, single-image GANs suf-
fer from the lack of diversity. In prior work related to
GANs on large training samples, loss of diversity in gen-
eration is considered as mode collapsing. [21] proposes
mini batch discrimination to overcome mode collapse in
training, where the similarity between intermediate fea-
tures from discriminator for real and generated samples
is used as additional information to discriminate the real
from fake. However, in the single-image generation con-
text, there is no way to incorporate this similarity. [22]
proposes regularization to maximize the generator gradi-
ent with respect to the latent noise, specifically for condi-
tional generation. While this may be of use, we opt to add
the diversity through Gaussian smoothing at coarser scale
without using an additional regularization loss. [23] uses
latent noise from a mixture model with learnable means
and sigmas to improve the diversity. This impose more
complexity for other task than generation such as editing
and harmonization.

Several prior works leverage different kinds of
feedback—some with GANs—to improve the output re-
sults in deep learning. [24, 25, 26] use the output of the
CNN as an input in an iterative manner to refine the re-
sults in different applications like instance segmentation,
human pose estimation and medical image segmentation.
[27] uses error feedback inside the feature space from back
projection units from low to high and vice versa. [28] and
[29] are first to explore the concept of feed back in GANs.
They use discriminator feedback to improve the generation
quality. [28] uses the intermediate features of the discrim-
inator to modify the corresponding features in the gener-
ator. First the network is trained without the feedback
modules and then the generator is fixed while discrimina-
tor and feedback modules are allowed to be updated. [29]

2



uses adaptive spatial transform layer to use the generated
results from previous iteration and its discriminator scores
to find the affine parameter to modify the encoded chan-
nel features in the generator at the next iteration. Both
of these methods have not been explored with multi scale
architectures and in the context of single image GAN. In-
stead of using the discriminator feedback to improve the
results in the same scale, we pass it to the generator in
the next scale to improve the results in most challenging
regions.

Several works related to GANs show hierarchical train-
ing on multiple scales with different resolutions of im-
ages helping to achieve high quality, high resolution sam-
ples [30, 9, 31]. The use of patch discriminators, where
they infer each small patches inside the generated image
as fake or real, has been explored in [32, 33]. [34, 35, 36]
incorporate attention in the vision models by computing
features in channel or spatial dimension using the global
pooling operation. In our work we use self attention for
incorporating global structure through finding the similar-
ities of pixels at different locations on the trained image.
[37] proposes to use SA in both the generator and dis-
criminator to capture the long range dependencies. The
vision transformers apply global self-attention to full-sized
images [38] using 16× 16 patches. It uses multi-head self-
attention blocks inside the transformer based architecture
for classifying images.

Recently proposed SinGAN [3] uses a hierarchical un-
conditional GAN approach with single image for perform-
ing many tasks like image generation, super-resolution,
editing and harmonization. ConSinGAN [4] proposes to
concurrently train several scales in SinGAN to increase
the conformity of generated images. PatchGenCN [39] ex-
plicitly models the internal distribution of patch statistics
with hierarchical energy based models using a patch con-
volutional network. Above works contain the generator
with only a stack of a few convolution layers which does
not provide the global information at coarser scales. To
improve the realism of generated images from more com-
plex structures, ExSinGAN [40] uses external information
through GAN inversion at coarsest scale from pretrained
BigGAN [10] and perceptual loss from pretrained VGG-
19 [18]. MOGAN [41] needs an additional input to specify
the region of interest for performing foreground and back-
ground generation separately. HP-VAE-GAN [42] uses hi-
erarchical patch variational autoencoder at coarser scales
for diverse video and image generation. It also depends on
the lower receptive fields of convolutional layers at coarser
scales. Above works show limited performance in generat-
ing realistic images for which the global structure is impor-
tant with higher generation quality without using external
information, e.g., faces and buildings. External informa-
tion mostly causes lesser visual diversity in the generation.
The main reason for this limitation is that these networks
do not have explicit controllable parameters to capture
global information while training. Therefore, generating
diverse images from single image that need better repre-
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Figure 1: Overall structure of our single image generator. See sec. 2.1
for details on the general single-image generation mechanism. Here,
G0, D0 to GN−k, DN−k are convolutional blocks without SA, and
GN−k+1, DN−k+1 to GN , DN are convolutional blocks with SA.
Further, Xi, X̄i and Zi (i = 0, 1, . . . , N) are real image, generated
image, and 2-D noise at scale i, respectively, and ↑m denotes up-
sampling. H(σ) is a Gaussian kernel. Notice that the scales with
attention blocks receive Gaussian smooth image as real samples for
the discriminator. These infuse global context to image generation.

sentation of the global structure still needs exploration.

2. Method

We describe the proposed system in detail in this sec-
tion. Fig. 1 shows the overall architecture of our system,
which generates diverse images based on the training on
a single image while preserving the global structure. Our
architecture contains several scales to train from coarsest
to finer scales. In each scale, other than the coarsest one,
the generator has the upsampled images generated from
the previously trained scale, upsampled feedback from dis-
criminator of previous scale, and noise as inputs. Here,
each scale produces residual terms compared to the up-
sampled image from the previous scale. The generator at
the coarser scale receive only 2D noise as an input. Our
modification to the network architecture compared to Sin-
GAN and ConSinGAN architectures is the introduction of
SA blocks at the coarser scales in both the generator and
discriminator and the use of adversarial feedback in all the
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Figure 2: Adversarial feedback: the output from the discriminator of
particular scale (e.g., DN ) is fed back through the upsampling block
↑m to the generator GN−1 of the next scale.

scales above the coarsest one. Because we have a hierar-
chical structure and a patch-based discriminator, we can
generate images based on a single input image. Further-
more, we can preserve the global structure of the input
image, essential for intelligibility, due to the SA block.
Feeding the input image (of appropriate scale) convolved
with a Gaussian to the discriminator enables us to achieve
a good diversity in generated images. In summary, our
single-image synthesizer is an unconditional GAN with a
multiple-scale pipeline similar to SinGAN with a modified
SA layers for the first few scales in both the discriminator
(D) and generator (G). We use SA blocks to infuse global
context into the image generation at selected scales.

To compensate for the reduction of diversity when we
impose the long-range dependencies through SA blocks, we
introduce a strategy to use Gaussian kernels with varying
standard deviation (std.) to convolve the real image before
feeding to D at coarser scales only. With this, we can
achieve the desired diversity while maintaining the global
structure, which remedies one of the major issues in the
SinGAN-like architectures.

Fig. 2 (an excerpt of Fig. 1) shows how the adversarial
feedback is used. The output from the discriminator of a
particular scale (e.g., DN ) is fed back through the upsam-
pling block ↑m to the generator GN−1 of the next scale.
In this fashion, we are able to achieve adversarial feedback
in our multi-scale architecture. Here, we add noise only
for the upsampled image from the previous scale. In sum-
mary, with the inclusion of attention blocks at selected
scales and using Gaussian convolution in the discrimina-
tor image inputs, we are able to produce a diverse set of
images, particularly valuable when global structure is im-
portant.

2.1. A Brief Background on Single Image Generation

To create better understanding, here we briefly discuss
about single-image generations. For more information on
single image generation, following are good reads: [3], [4]
. The key idea to generating a generally similar but dif-
ferent image by learning from a single image is to learn
the distribution of the patches within the image. In each
scale above the coarsest scale, the generator produces the
residual term conditioned on upsampled version of gener-
ated image from previous scale (see Fig. 8). When the

↓m
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C2 T

SS Attention

↑m C3

CL

Figure 3: Self-attention block. This encourages the retention of the
global structure in the generated image. Here, CL denotes the previ-
ous convolution layer, C1, C2 and C3 are convolution layers. Further,
T denotes transpose and S denotes softmax, and ↓m and ↑m de-
note downsampling and upsampling, respectively. This self attention
block is added to the layers in generator and discriminator at coarser
scales which are depicted at Fig.1 in orange tone.

residual from the current scale is added to the upsampled
term from the previous term a larger and diverse image is
generated.

2.2. Image Generation at Each Scale

The procedure of image generation is the same as Sin-
GAN. Coarsest scale generation starts with random noise.
The generated results of each scale is fed to the scale above
after upsampling. These scales add noise (Zn−k) to the up-
sampled generation and use them as a prior to generate the
image from the current scale. We attach the upsampled
adversarial feedback with it. We can also generate images
starting from scales lesser than N . To do that we down-
sample the original image to the size of the corresponding
scale and feed that with added noise. In this situation ad-
versarial feedback is computed from the scale above with
the downsampled original image.

2.3. Self Attention (SA) Block

The SA block, shown in Fig. 3, is the important compo-
nent that infuses global context to our image generation in
addition to the convolution features which help to capture
the information in the local neighborhood. The advantage
of the SA block is that it implicitly increases the recep-
tive field of the features using the attention map which is
computed considering all the features in space. It miti-
gates the need for a higher number of convolutional layers
followed by a downsampling layers to increase the recep-
tive field. In hierarchical architectures, the coarser scales
play the major role in capturing the global structure of
the large objects inside the image. It is a much harder
goal to achieve only by using stack of convolutional layers.
Although adding self attention blocks helps to capture the
global structure, it introduces small local artifacts in the
generations. Due to this reason, we use the self-attention
blocks in the coarser scales only. Rest of the scales in the
GAN having only the convolution layers help to remove
the noise and add more local details to the generation.

Unlike the implementation in [37], we compute the
SA features from the downsampled version of features
from the last convolutional layer. In downsampling map
the features to the predefined fixed output size m × m,
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m ∈ [8, 16, 32] irrespective of the input. Instead of using
additional convolutions to compute the value features, we
directly pass the downsampled features to be modified by
the attention. Here, each feature is a weighted sum based
upon its similarity with others in key and query features
with an optional channel reduction. SA features are di-
rectly added to the convolutional feature without having
a learnable parameter like in SAGAN [37]. Experiments
show this form is enough to capture the required global
structure to pass it to the next scales.

2.4. Increasing the Diversity with Gaussian Smoothing
with Kernel with Random Standard Deviation

Adding SA to a greater number of scales capture more
and more long-term dependencies inside a single image.
However, it reduces the diversity in the generation. De-
pending on the nature of the image, particularly the com-
parative size of the global structure (e.g., some faces, Eiffel
tower image), we need to have SA in more scales than for
others. Then, the final realistic outcomes become less di-
verse. It is hard to tune other parameters like the level of
downsampling size or the positions of the SA block inside
each scale to balance the trade-off between realistic gener-
ation and diversity. SinGAN uses the same downsampled
version of the real image to be fed to D depict the real
sample for discriminator. It is one of the main reasons
why SinGAN architecture has to maintain a lower recep-
tive field with lesser layers to reduce the overfitting and
loss in diversity. To solve this problem, we propose con-
volving with a Gaussian which can maintain both image
quality and diversity: Instead of feeding the same image as
the real sample, we feed it after convolving with a Gaus-
sian kernel with random value for the std. sampled from a
uniform distribution between a predefined min. and max.
value. For the computation of the reconstruction loss, we
keep a fixed std. value for generating the real sample.

2.5. Adversarial Feedback

As the discriminator too holds a significant amount of
information on the distribution of patches, making the
generator aware of the discriminator’s spatial information
improves the reconstructions quality [28].

To achieve this feedback information transfer, we con-
catenate the discriminator’s score for each patch from the
previous scale with the generator input for the current
scale. Generators at higher layers (above the coarsest
scale) only generates the residual images from the upsam-
pled generation of the previous scale. Generation at the
coarsest scale does not depend on adversarial feedback be-
cause it only depends on the noise that we feed. We con-
nect the feedback to the scales above it. Diversity of the
generations highly depends on the variations in the coars-
est scale. Scales above the coarsest scale help to add more
details on its upsampled versions by generating the resid-
uals. In the higher scales we do not use self attention.
So the concatenated feedback in higher scales only affect

the results in the local neighbourhood because of the few
convolutional layers. Therefore, in our approach, feedback
does not degrade the diversity significantly while improv-
ing the generation quality.

2.6. Loss

Eq. 1 shows the original GAN loss used in Goodfellow
et al. [1].

min
G

max
D
Ladv(G,D) = Ex∼Pr [log(D(x)]

+ Ez∼Pz [log(1−D(G(z)))]
(1)

Here, D(x) is output of discriminator for real images which
aims to give a probabilistic score for x that belongs to the
real data distribution, G(z) is the fake image from the ran-
dom vector z. Typically, several iterations of interchange-
able generator and discriminator optimizing happen until
they reach Nash equilibrium. This leads to the generator
fully approximating the the distribution of data Pr and dis-
criminator being unable to differentiate between the two
distributions. See Goodfellow et al. [1] for more details.

W (Pr, Pg) = inf
γ∈π(Pr,Pg)

E(x,y)∈γ [‖x− y‖] (2)

W (Pr, Pg) = max
w∈W

Ex∈Pr [fw(x)]− Ex∈Pg [fw(x)] (3)

When the discriminator is optimal, the original GAN loss
(Eq. 1) relates to the Jensen–Shannon (JS) divergence be-
tween the real and fake distributions. Since real and fake
distributions mostly lie in a lower dimensional manifold, it
may contains non overlapping regions. This scenario make
the discriminator to learn separate real and fake images
easily and gradients of JS divergence become very smaller
for the generator. To overcome this issue WGAN [43] pro-
poses Wasserstein distance instead of using JS divergence
bases loss function. Wasserstein distance is defined as the
minimum of effort to move from one distribution to an-
other among a possible joint distributions which have the
marginals as real and fake distributions (Pr, Pg) are the
options for each transport plan as in Eq. 2. WGAN [43]
authors use Kantorovich-Rubinstein duality to evaluate
the Wasserstein distance by formulating the discrimina-
tor as a parameterized family of functions (fw(x)) with
the k-Lipschitz constraint which maximizes the difference
between the expected socres for real and fake images by
updating the discriminator weights as in Eq. 3. [44] intro-
duce gradient penalty loss term to impose the 1-Lipschitz
constraint instead of using weight clipping in [43].

We use the WGAN-GP [43] [44] for the adversarial loss
and reconstruction loss to make the network generate the
real samples from a particular fixed sample of noise at each
scale, modified to accommodate the convolution with the
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Gaussian H(·). For each scale (see Fig. 1) n(< N)

L = min
Gn

max
Dn

Ladv(Gn, Dn) + αLrec(Gn)

Ladv = E~xf∼Pg
[D(~̃x)]− E~xr∼Ph(σ1,σ2)[D(~̃x)]

+ λE~̂x∼P
~̂x

[
(‖∇~̂xD(~̂x)‖2 − 1)2

]
Lrec = ‖Gn(0, (~xrec

n+1 ↑r)− ~̃xn ∗H(σ3)‖2

where Ph is the distribution of images convolved with
a Gaussian, ~x ∗ H(σ) and σ ∼ U(σ1, σ2) and σ3 ∈
[σ1, σ2].The convolution with the Gaussian H(.) is for in-
creasing the diversity of generation (while maintain the
global structure). Note that convolution with H(·). is not
used for scales without the attention block. See Sec. 2.4
for more details.

2.7. Selection of Parameters

Several parameters select the insertion level of global
information. (1) No. of scales with SA starting from the
coarsest scale (k). With this, SA is on scales N to N−k+1.
(2) Choices of layers in each G scale to add SA. (3) Max.
and min. value for std. for the Gaussian kernel σ1 and
σ2. (4) Output size after downsampling with a factor m
inside the SA blocks. Items (1) (2) and (3) are impactful.
The default choice for (4) is 16 which worked well for all
the images that we tested. (1) and (2) directly control the
global structure in the image generation.

3. Experimental Results

We carried out experiments to show 1. how the atten-
tion blocks and Gaussian smoothing of the input to the
discriminator generate high-quality diverse images, 2. the
effect of the hyper-parameters (k and σ), 3. impact of
using Gaussian smoothing only, 4. impact of using adver-
sarial feedback only, 5. overall impact of using feedback,
self-attention, and Gaussian smoothing together compar-
ing to SinGAN and ConSinGAN 6. how our system can
perform editing, harmonization, and arbitrary-sized gen-
eration.

We keep the LR of the generator (G) and discrimina-
tor (D) at 0.0001 and train for 6000 epochs with updating
G and D one time in each epoch. We use 10 for α as a
weight for reconstruction loss. In each epoch, G and D
are updated with the loss on a single real and fake pair.
In our experiments we use instance normalization [45] in-
stead of using batch normalization [46] as in SinGAN. We
keep this configuration as baseline for SinGAN and our
approaches. We also analyze ConSinGAN with our choice
of parameters as mentioned above.

3.1. Impact of Self Attention Blocks and Gaussian
Smoothing in Single Image Generation

Here we qualitatively and quantitatively explain how
the self attention helps to increase the generated image

Table 1: Average SIFID score (lower the better) of generated images
from SinGAN [3] and ours starting with scale N and N − 1.

Generation starting scale SinGAN Ours

N 0.02371 0.01828
N − 1 0.01396 0.01120

quality alongside with Gaussian smoothing for increasing
the diversity from single image. Fig. 4 compares our results
with SinGAN. Top five rows show images that need the
global structure to be realistic. In column c and d we
show our results with its hyper-parameters. We increase
the number of scales with SA standard deviation values
from column c to column d, and add self-attention to first
four layers inside G and D for the results in column d.
Note that our results in column c is visually better than
SinGAN for the image in the first three rows. For the
images in the 4th and 5th row, our results in column d
performs better as these images required another SA layer
to recover the global structure and a higher σ to maintain
the diversity. Last three rows show images that do not
need the global structure to be realistic. In column g where
we use SA in the coarsest scale only. Even in this scenario
our method produces diverse images on par with SinGAN.
However, while we increase the number of scales with SA
to 3 in column h, diversity becomes low as the constraint
on global structure becomes higher.

We explain how diversity and image quality vary be-
tween SinGAN and ours. Diversity is computed among
50 generated images by as the channel wise std. of each
pixel and averaging. Fig. 5 compares diversity of images
which are generated from scale N to scale N − 7. We use
SA blocks in first 4 scales. These scales are trained with
random Gaussian blurred input to maintain diversity com-
pared to the corresponding scales in SinGAN. SinGAN is
able to generate images with global context if it starts the
generation from scale N − 1 or above, but it looses the di-
versity severely compared to the generation from coarsest
scale with random noise. So, in SinGAN the maximum
achievable diversity with global context can only be at-
tained at scale N − 1. In all above images the diversity
of generated images of SinGAN from scale N − 1 is lower
than the diversity of images with global contexts which are
generated by our method from scale N and even in scale
N − 1. This validates that our method is able to produce
images with global context without loosing diversity as in
SinGAN. We use Single Image Frechet Inception Distance
(SIFID) as proposed in SinGAN to compare the quality
of generated samples from each image. It uses statistics
of features from 2nd layer of the inception network [47].
It compares generated single image with real one by cal-
culating distance between distribution which is created by
features before the second pooling layer of Inception Net-
work. It is low when the generated image quality is same
as the real image. Table 1 shows the average SIFID for the
images which need global structure in column d in Fig. 4.
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(a) Input (b) SinGAN [3] (c) k = 3, σc (d) k = 4, σd

(e) Input (f) SinGAN [3] (g) k = 1, σg
(h) k = 3, σh

Figure 4: Here we compare the baseline with only using Gaussian
smoothing and attention. Attention retains the global structure. At-
tentions needs to couple with Gaussian smoothing to have diversity
in results. (a) to (d): for images that needs to maintain the global
structure. (e) to (h): for images that do not need to maintain the
global structure. (c), (d), (g) and (h): our results with two sets of
hyper-parameters. σc ∈ [1, 3], σd, σg , σh ∈ [3, 7]. Notice that our
method retains the global structure better than SinGAN [3] for the
images which require global structure for its realistic look.

Our method has lower scores in generations from scale N
and N − 1. This shows that our method can generate
high quality samples compared to SinGAN in the context
of images which need global structure. In summary, the
low SIFID and high diversity show that our results are of
better quality than SinGAN.

3.2. Selection of Hyper-Parameters

Fig. 7 show pairs of training and fake images at the end
of training at each scale. Column a shows the results of
using SA block in first three scales. This G is not able

Table 2: Comparison of SinGAN [3] baseline with our proposed
improvements in terms of SIFID (lower the better). SinGAN-G:
SinGAN with Gaussian smoothing the input to the discriminator.
SinGAN-F: SinGAN with adversarial feedback. Adversarial feedback
only, and Gaussian smoothing only improve the generation quality
in most of the image.

Image SinGAN SinGAN
+ G

Sin-
GAN
+ F

balloons 0.049 0.053 0.041
birds 0.029 0.022 0.021
Colosseum 0.044 0.038 0.038
cows 0.037 0.047 0.063
Eiffel 0.041 0.031 0.032
Elon Musk 0.014 0.005 0.007
face 0.031 0.018 0.016
kid 0.022 0.037 0.025
lightning1 0.065 0.043 0.031
Mona Lisa 0.03 0.047 0.026
mountains 0.143 0.038 0.034
tree 0.027 0.015 0.012
Mean SIFID 0.044 0.033 0.029

to capture the global structure from the scales with self
attention. Here the self attention blocks are added to first
three coarser scales [N,N − 1, N − 2]. So, the generations
after this scale are not able to preserve the global struc-
ture. In the next step, we add SA to scale N − 3 and to
compensate for the reduction of diversity, we increase the
standard deviationσ range from [0.5, 1] to [3, 7] . It assists
G to capture the global structure fully, which makes the
following generations realistic.

3.3. Impact of Using Gaussian Kernel with Random Stan-
dard Deviation:

While using self attention (without random Gaussian
blur) the system captures the portion of the image very
well from the coarsest scale due to the SA blocks and keeps
that portion unchanged in generation. Random Gaussian
blur mitigates this issue and adds more diversity. Inter-
mediate results are shown in Fig. 8 for two training sam-
ples. First row shows the images from the generator output
(residual term) and second row shows the upsampled im-
ages from previous scale. Here, self attention blocks with
random Gaussian augmentation is applied to first 3 scales.
In scale 3, the network with a stack of convolution lay-
ers with small receptive field is able to learn the remaining
high frequency residual term according to its low frequency
input from the previous scale. Fig. 9 shows the impact of
using the Gaussian smoothed input (see Fig. 1) in gener-
ating images while maintaining the global structure. The
figure shows both the sale-0 generation (small images) and
the last scale (large images, scale-8). Column 1 is with no
smoothing, column 2 is with σ ∈ [1, 3] and column 3 is with
σ ∈ [3, 7]. All the three experiments use self-attention in
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Table 3: SIFID measured (lower the better). Ours outperforms SinGAN and ConSinGAN all except in one.

Image SinGAN
ConSinGAN Def.

Param.
ConSinGAN 6000

ConSinGAN
lr scale 0.5

Ours

balloons 0.049 0.167 0.282 0.104 0.042
birds 0.029 0.112 0.221 0.131 0.014
Colosseum 0.044 0.103 0.144 0.056 0.029
cows 0.037 0.125 0.097 0.126 0.022
Eiffel 0.041 0.139 0.047 0.033 0.027
Elon Musk 0.014 0.031 0.03 0.023 0.004
face 0.031 0.040 0.045 0.032 0.012
kid 0.022 0.104 0.113 0.092 0.029
lightning1 0.065 0.111 0.123 0.086 0.024
Mona Lisa 0.030 0.139 0.099 0.141 0.012
mountains 0.143 0.154 0.146 0.096 0.037
tree 0.027 0.059 0.079 0.045 0.018
Average 0.044 0.107 0.119 0.08 0.023

Table 4: Diversity measured using the average standard deviation of pixel. Note that the diversity in our work is better when compared
with ConSinGAN with the same hyper-parameters needed for maintaining the global structure. Here the diversity values are normalized with
mean of pixel values in each image.

Image SinGAN
ConSinGAN Def.

Param.
ConSinGAN 6000

ConSinGAN
lr scale 0.5

Ours

balloons 0.591 0.628 0.418 0.584 0.576
birds 0.35 0.346 0.205 0.224 0.285
Colosseum 0.834 0.803 0.568 0.455 0.777
cows 0.834 0.764 0.602 0.75 0.779
Eiffel 0.42 0.487 0.208 0.203 0.370
Elon Musk 0.216 0.254 0.192 0.169 0.201
face 0.772 0.502 0.362 0.302 0.296
kid 0.555 0.462 0.369 0.404 0.446
lightning1 1.548 1.014 0.628 0.629 0.823
Mona Lisa 1.172 1.055 0.422 0.907 0.634
mountains 0.791 0.855 0.557 0.513 0.527
tree 0.312 0.370 0.313 0.305 0.221
Average 0.700 0.628 0.408 0.454 0.495
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Figure 5: Diversity (mean std. of pixel values of 50 generated images, higher the better diversity) with scale: ours show more diversity even
at lower scales compared to SinGAN [3].

first three scales. Experiments without Gaussian smooth-
ing memorize portion of trained image and have that por-
tion unchanged in all over the generation (e.g., see the top
left corner of column 3 where large σ has been successful in
generating an image with a large variation in hair in com-
parison with column 1 and 2). This effect is reduced when
adding Gaussian smoothing with larger values of σ. This
effect is clearly shown in Fig. 10. Here, the diversity is
computed at each spatial location using generated images.
Self attention, important to add global information to the
generation, has a disadvantage of reducing the diversity.
Gaussian smoothing at the discriminator resolves this is-
sue and increases the diversity. In view of this, providing
the Gaussian is crucial for maintaining diversity in gener-
ation. The third column (SinGAN + G) of Table 2 shows
the SIFID scores for the experiments only with Gaussian
smoothing. Gaussian smoothing helps to increase the im-
age quality in most of the tested images compared to the
SinGAN base line.

3.4. Impact of Using Adversarial Feedback

Figure 11 shows the visualization of the feedback in
terms of discriminator score for three scales of the bal-
loons image. The area with lower quality generation, e.g.,
balloons in the image, result in low scores in the discrim-
inator. We feed this back to the generator in the next
scale (See Fig. 2). Due to the low score, the generator will
get a cue where the improvements are needed and vise
versa. The last column of Table 2 (SinGAN + F) shows
the SIFID scores for the experiments only with adversarial
feedback. Feedback helps to increase the image quality in
most of the tested images. Fig.12 shows qualitative results
of using feedback.

3.5. Overall Impact

In this subsection, we compare the performance of our
method with SinGAN [3] and ConSinGAN [4] with re-
spect to the SIFID scores and the diversity scores. In this
experiment we use feedback with self-attention and Gaus-
sian smoothing. With the help of feedback, our method
is able to produce realistic diverse results when using self-
attention blocks only at coarser scales in first three layers

of G and D and Gaussian smoothing with σ in the range
between 1 and 3.

ConSinGAN has been directly developed from SinGAN
architecture with the major contribution of training multi-
ple stages concurrently while propagating features within
the stages and using a lower learning rate at coarser scale
resulted from specific learning rate scale. We first present
the average SIFID scores achieved with our method, Sin-
GAN [3] and ConSinGAN [4] in Table 3. Here, we consider
ConSinGAN with the default parameters (2000 epochs
with updating D and G three times per epoch, not us-
ing normalization layers, using learning rate scale of 0.1),
ConSinGAN 6000 which matches hyperparameters of our
model (6000 epochs with updating D and G one time
per epoch, use instance normalization, using learning rate
scale of 0.1) and ConSinGAN lr scale 0.5 (Here learning
rate of lower scales are reduce by the factor of 0.5. Hence
coarser scales are trained with higher learning rates than
above configuration. This helps to maintain more global
structure ). It is evident that our method outperforms
both SinGAN and ConSinGAN for all the considered im-
ages except one.

Table 4 shows the diversity-score comparison with Sin-
GAN and ConSinGAN. Our system gets higher diversity
when we consider the ConSinGAN 6000 and ConSinGAN
lr scale 0.5 which generates realistic samples for the im-
ages which need global structure to be maintained. Di-
versity of our system is lower than ConSinGAN with de-
fault parameters, but ConSinGAN generated images are
not realistic. When compared to SinGAN, our method
looses diversity for constraining in the global structure
through self attention blocks. As we mentioned in Fig. 5,
our method generates highly diverse images compared to
SinGAN when it starts the generation not from the coarser
scales to retain global structure. Fig. 6 shows the visual
results comparison with ConSinGAN. ConSinGAN with
default parameters is clearly unable to preserve the global
structure. Our method constrains the global structure for
the images with larger objects like faces, humans, and
buildings while generating diverse images with smaller ob-
jects like balloons and cows.

We also test our method in the same 50 images of
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(a) Input (b) ConSinGAN-
Def

(c) ConSin-
GAN6000

(d) Ours

(e) Input (f) ConSinGAN-
Def

(g) ConSin-
GAN6000

(h) Ours

Figure 6: ConSinGAN vs. ours: (b) and (f) show that ConSinGAN
with default parameters ( 2000 epochs without any normalization
layers inside the architecture ) is not able to preserve the global struc-
ture in generating. Columns (c) and (g) match the hyper-parameters
with our with the same number of epochs and instance normaliza-
tion.

LSUN [48] and Places [49] datasets as in the prior works.
In Table 5 and Table 6 we present the average SIFID and
the diversity scores for LSUN and Places datasets, respec-
tively. In both datasets we achieve lower SIFID scores
without degrading much in the diversity. We show the
qualitative comparison in Figure 13.

Furthermore, we conducted a user study to evaluate
the quality and diversity of generated images. Using

(a) SA at the first three scales (k =
2), σ ∈ [0.5, 1]

(b) SA at the first four scales (k =
3), σ ∈ [3, 7]

Figure 7: Selection of hyper-parameters k and σ. k is the num-
ber of scales having self-attention starting from the coarsest scale
k = 0. Column 1 and 3 are the the Gaussian smoothed real im-
ages (smoothed until N − k scale and second and fourth are the
corresponding generated results. σ is the standard deviation of the
smoothing filter applied to the real images given as an input to the
discriminator. k = 3 retains the global structure at N − 4th scale.
Increasing k requires increasing the σ of the Gaussian smoothing too
to have diversity in image generation.

(a) scale N (b) scale N-1 (c) scale N-2 (d) scale N-3

(e) scale N (f) scale N-1 (g) scale N-2 (h) scale N-3

Figure 8: Intermediate outputs: residual term (Fig. 1 ) from gen-
erator at each scale and up-sampled results from previous scale for
reconstructed samples. Scale N (coarsest) output is an image-like
output. However, higher scales generate resisidual (three top right
images). Bottom rows show the summation between the residual
and up-sampled images form the immediate lower scales. From scale
N−3 onward, the network generates the high frequency terms which
are subdued in previous scale due to the Gaussian smoothing. As
a result the quality of the image generation is not affected by the
Gaussian smoothing essential to maintain the diversity.

Amazon Mechanical Turk (AMT), we showed the origi-
nal image and 5 generated images from different methods
(SinGAN[3], ConSinGAN[4], ExSinGAN[40], HP-VAE-
GAN[42] and our method) and requested the users to se-
lect the one with the highest quality and diversity. We
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Figure 9: Impact of the σ of the Gaussian kernel in generating diver-
sity while maintaining global structure, particularly at the corners.
Column 1 is with no smoothing, column 2 is with σ ∈ [1, 3] and col-
umn 3 is with σ ∈ [3, 7]. Form the diversity of hair at top-left corner
in column 3, in comparison with column 1 and 2, we can see that
Gaussian kernel with larger sigma encourages diversity particularly
near image corners.

(a) SA only (b) SA3 σ[1,3] (c) SA3 σ[3,7]

Figure 10: The diversity (as shown by the average std. of pixels
among 50 generated images). (a) Only with self-attention. (b) Self-
attention and Gaussian smoothing. (c) Self-attention and Gaussian
smoothing with a larger σ. Notice that as the σ of the Gaussian
kernel increases, the diversity too increases.

(a) Discriminator score
for fake image

(b) Discriminator score
for real image

(c) Fake sample

Figure 11: Visualization of adversarial feedback of real and fake im-
age at each scale in terms of the discriminator score (blue: low,
yellow: high). Top tow: scale 0, mid row: scale 1, bottom row: scale
2. Notice that the regions in the fake image with low quality gen-
eration (e.g., balloons) getting lower values in the feedback. Due to
the low score, the generator will get a cue where the improvements
are needed.

showed 49 images from LSUN [48] and 50 images of
Places [49] for this user study, and we used one image
from LSUN as an example for the users to explain the
task clearly. We used AMT to aggregate the responses
from 49 participants. For each image, we assigned a score

(a) SinGAN (b) SinGAN with feedback

Figure 12: Effect of incorporating adversarial feedback. The right
column with adversarial feedback has better contrast, sharpness (ob-
serve the edges) and visual quality. See Table 2 for quantitative
results.

of 1 for the method having the highest user votes, and
we present the overall results in Tables 5 and 6, respec-
tively, for LSUN and Places datasets. For both datasets,
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(a) Input (b) SinGAN [3]

(c) ConSinGAN [4] (d) HP-VAE-GAN [42] (e) ExSinGAN [40]

(f) Ours

Figure 13: Comparision on LSUN [48] and Places [49] datasets. Our method is visually more diverse and achieves higher quality than the
other methods.
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Table 5: Average SIFID score (lower the better), diversity (higher
the better), and user votes (higher the better) of generated images
from LSUN dataset

Methods SIFID ↓ Diversity ↑ User votes ↑
SinGAN [3] 0.11 0.60 0
ConSinGAN [4] 0.08 0.55 5
HP-VAE-GAN [42] 0.40 0.78 0
ExSinGAN [40] 0.11 0.50 16
Ours 0.06 0.60 28

Table 6: Average SIFID score (lower the better), diversity (higher
the better), and user votes (higher the better) of generated images
from Places dataset

Methods SIFID ↓ Diversity ↑ User votes ↑
SinGAN [3] 0.09 0.52 2
ConSinGAN [4] 0.06 0.50 7
HP-VAE-GAN [42] 0.17 0.62 1
ExSinGAN [40] 0.10 0.47 16
Ours 0.04 0.44 24

(a) Edited input (b) Output due to the edited image

(c) Edited input (d) Output due to the edited image

Figure 14: The performance of our system in image editing: (a)
Edited image: Note the rectangular edit (b) successful removal of
the edit

our method achieves the highest scores confirming that our
method generates images with higher quality and diversity
compared to previously proposed methods.

3.6. Image Harmonization, Editing, and Generating
Arbitrary-Sized Images

Here we show the results of some other tasks with using
self-attention blocks, Gaussian smoothing and feedback.
We can do image harmonization by feeding the source im-
age and the image to be blended in at a intermediate scale
(e.g., scale 4 or 5). Then the generated image will have

(a) Harmonization input (b) Harmonized output

Figure 15: The performance of our system in harmonization: New
mask from different patch (e.g., spacecraft) statistics is harmonized
into the trained image.

the image to be blended harmonized into the source im-
age. Fig. 15 shows the ability of our system to harmonize
images. Notice how, e.g., the space craft has been harmo-
nized into the background image.

In image editing, an artificially inserted patch at a
course scale will be blended in without artifacts. Binary
mask indicating the location of inserted patch helps to re-
fine the results by only changing the portion of the inserted
patch Fig. 14 shows the ability our our system to edit im-
ages. Notice how the edits (light blue patch, and the green
branches) have been successfully blended-in.

Our method able to produce arbitrary-sized images, this
is because of using fixed scale size (m) after downsampling
operation in self attention blocks. If we do not use a fixed
scale for downsampling, additional features from the ar-
bitray size noise will interfere self attention blocks and
reduce the quality of the output. Using a constant scale
down size helps to find the inter dependencies of downsam-
pled feature space to compute the re-weighted feature sam-
ples. Fig. 16 show four example of arbitrary-sized image
generations. Our method cannot produce realistic results
when generating arbitrary size images from faces because
network cannot preserve the global structure for the arbi-
trary size input which is not available at the training time.
We observed that our animation results also are better in
quality than SinGAN.
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Figure 16: Arbitrary sized image generation: The new images are
generated from noise with a different aspect ratio from the trained
image. In this particular example, the width is doubled. Notice how
larger images are generated while preserving the global structure.

Above results show that our method is able to produce
results on par with SinGAN. Our attention module does
not interfere with the the ability to the system in image
harmonization, editing, and generating arbitrary-sized im-
ages. We are able to do these tasks while preserving the
global structure.

3.7. Animation and Image Augmentation

Here we consider two applications of the proposed
model: animation and image augmentation. We present
four frames of a video generated by our method and Sin-
GAN [3] in Fig. 17. We clearly observe that our method
improves the fidelity of an animated video generated with
an image which needs global structure to look realistic.
This confirms that our method can generate realistic ani-
mations with higher diversity while maintaining the global
structure compared to SinGAN.

(a) SinGAN [3]

(b) Ours

Figure 17: Four frames of animated videos generated using our
method and SinGAN. Our method can generate realistic animations
with higher diversity while maintaining the global structure.

We then conduct an experiment to evaluate the feasi-
bility of using our method for data augmentation. To this
end, we select two classes (abbey and arch) from SUN
database [50]. In each class, we use 4 images and train
them to generate 500 images from SinGAN [3] and our
method. Next, we train separate classifiers (ResNet18[51])
using these generated images and evaluate the perfor-
mance with the test set. The classifier trained using the
images generated from our method achieves an accuracy of
63.68% whereas the classifier trained using the images gen-
erated from SinGAN achieves an accuracy of only 58.42%.
The classifier trained only with 8 original samples achieves
52.11%. These experimental results—although produced
with eight images—confirm that our model can be success-
fully used for image augmentation.

4. Limitations

Our work augments the SinGAN architecture to im-
prove its generation quality with an additional attention
layer and feedback through the discriminator. Compared
to SinGAN, attention layers introduce additional number
of trainable parameters. Unlike in SinGAN, we need to
forward pass through the previous discriminators for gen-
erating the feedback. Having the Gaussian smoothing aug-
mentation also adds an overhead. These reasons make our
methodology to take higher training time than SinGAN
and ConSinGAN. Even though with our default parame-
ters we achieve the better generation quality without de-
grading the diversity, image specific parameters will lead
to more better results. Since our method trains with only
one sample, we cannot control the specific semantic char-
acteristics in the generation from noise.
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5. Conclusion

In this work, we improved the technique of image gen-
eration in realistic diverse single image generation when
global structure is more important. We were able to con-
trol the level of global contextual information insertion
using self-attention blocks, impose the diversity through
convolving the input with a random Gaussian kernel when
training the discriminator, and improve the quality of gen-
eration with adversarial feedback. This also helped to in-
crease the diversity in generating samples from less-coarse
scales significantly compared to SinGAN. Our future work
will address generating images that need the global context
with varying aspect ratios, denoising, and image inpaint-
ing using this work.

Acknowledgement

This work was supported in part by the National Re-
source Council of Sri Lanka under the grant 19-080.

References

[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, Y. Bengio, Generative adversarial
nets, in: Advances in Neural Information Processing Systems,
2014, pp. 2672–2680.

[2] A. Radford, L. Metz, S. Chintala, Unsupervised representa-
tion learning with deep convolutional generative adversarial net-
works, in: International Conference on Learning Representa-
tions, no. 1511.06434, 2016, pp. 1–16.

[3] T. R. Shaham, T. Dekel, T. Michaeli, SinGAN: Learning a gen-
erative model from a single natural image, in: IEEE/CVF Inter-
national Conference on Computer Vision, 2019, pp. 4569–4579.

[4] T. Hinz, M. Fisher, O. Wang, S. Wermter, Improved techniques
for training single-image GANs, in: IEEE/CVF Winter Confer-
ence on Applications of Computer Vision, 2021, pp. 1300–1309.

[5] C. Bowles, L. Chen, R. Guerrero, P. Bentley, R. Gunn, A. Ham-
mers, D. A. Dickie, M. V. Hernández, J. Wardlaw, D. Rueckert,
GAN augmentation: Augmenting training data using genera-
tive adversarial networks (2018).

[6] S. Gu, R. Zhang, H. Luo, M. Li, H. Feng, X. Tang, Improved
SinGAN integrated with an attentional mechanism for remote
sensing image classification, Remote Sensing.

[7] T. Karras, S. Laine, T. Aila, A style-based generator architec-
ture for generative adversarial networks, in: IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 2019, pp.
4401–4410.

[8] H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang,
D. Metaxas, Stackgan: Text to photo-realistic image synthe-
sis with stacked generative adversarial networks (2017).

[9] T. Karras, T. Aila, S. Laine, J. Lehtinen, Progressive growing
of gans for improved quality, stability, and variation, in: In-
ternational Conference on Learning Representations, 2018, pp.
1–26.

[10] A. Brock, J. Donahue, K. Simonyan, Large scale GAN train-
ing for high fidelity natural image synthesis, in: International
Conference on Learning Representations, 2019.

[11] D. Ulyanov, A. Vedaldi, V. Lempitsky, Deep image prior, in:
IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 9446—-9454.

[12] Y. Gandelsman, A. Shocher, M. Irani, ”double-dip”: Unsuper-
vised image decomposition via coupled deep-image-priors.

[13] A. Shocher, N. Cohen, M. Irani, ”zero-shot” super-resolution
using deep internal learning, in: 2018 IEEE Conference on Com-
puter Vision and Pattern Recognition, 2018, pp. 3118–3126.

[14] S. Bell-Kligler, A. Shocher, M. Irani, Blind super-resolution ker-
nel estimation using an internal-gan, in: Advances in Neural In-
formation Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, 2019, pp. 284–293.

[15] L. P. Zuckerman, E. Naor, G. Pisha, S. Bagon, M. Irani, Across
scales and across dimensions: Temporal super-resolution using
deep internal learning, in: Computer Vision - ECCV 2020 -
16th European Conference, Glasgow, UK, August 23-28, 2020,
Proceedings, Part VII, 2020, pp. 52–68.

[16] N. Jetchev, U. Bergmann, R. Vollgraf, Texture synthesis with
spatial generative adversarial networks (2017).

[17] Y. Zhou, Z. Zhu, X. Bai, D. Lischinski, D. Cohen-Or,
H. Huang, Non-stationary texture synthesis by adversarial ex-
pansion (2018).

[18] K. Simonyan, A. Zisserman, Very deep convolutional networks
for large-scale image recognition, 2015.

[19] U. Bergmann, N. Jetchev, R. Vollgraf, Learning texture mani-
folds with the periodic spatial gan (2017).

[20] A. Shocher, S. Bagon, P. Isola, M. Irani, InGAN: Capturing
and retargeting the ”DNA” of a natural image, in: IEEE/CVF
International Conference on Computer Vision, 2019, pp. 4492–
4501.

[21] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Rad-
ford, X. Chen, Improved techniques for training GANs, in: Ad-
vances in Neural Information Processing Systems, 2016, pp.
2234–2242.

[22] D. Yang, S. Hong, Y. Jang, T. Zhao, H. Lee, Diversity-sensitive
conditional generative adversarial networks, in: 7th Interna-
tional Conference on Learning Representations, ICLR 2019,
2019.

[23] S. Gurumurthy, R. K. Sarvadevabhatla, R. V. Babu, DeLiGAN
: Generative adversarial networks for diverse and limited data,
in: Proceedings - 30th IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2017, 2017, pp. 4941–4949.

[24] K. Li, B. Hariharan, J. Malik, Iterative instance segmentation,
in: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 3659–3667.

[25] J. Carreira, P. Agrawal, K. Fragkiadaki, J. Malik, Human pose
estimation with iterative error feedback, in: Proceedings of the
IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 2016, pp. 4733–4742.
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