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Abstract—Transformers combined with convolutional encoders have been recently used for hand gesture recognition
(HGR) using micro-Doppler signatures. We propose a vision-transformer-based architecture for HGR with multi-antenna
continuous-wave Doppler radar receivers. The proposed architecture consists of three modules: a convolutional encoder-
decoder, an attention module with three transformer layers, and a multi-layer perceptron. The novel convolutional decoder
helps to feed patches with larger sizes to the attention module for improved feature extraction. Experimental results
obtained with a dataset corresponding to a two-antenna continuous-wave Doppler radar receiver operating at 24 GHz
(published by Skaria et al.) confirm that the proposed architecture achieves an accuracy of 98.3% which substantially
surpasses the state-of-the-art on the used dataset.

Index Terms—Vision transformers, attention mechanisms, deep learning, micro-Doppler signatures, hand gesture recognition.

I. INTRODUCTION

Hand gesture recognition (HGR) plays a vital role in human
computer interactions, augmented/mixed reality, and human-machine
teaming, where specific gestures made by the human hands may be
used to control electronics systems. Examples include interfaces
to smart phones, vending machines, drones/robots, and gaming
devices [1]–[3]. On-body device-based approaches, where a person
wears or carries a device (e.g., inertial sensors, or radio frequency
(RF) identification tags) have been employed for HGR. Device-free
approaches such as computer vision, acoustic sensing, and RF sensing
have also been employed [2], [3]. Compared to device-based sensing,
device-free sensing is user friendly and widely adopted [2], [3]. Vision-
based and acoustic-based device-free approaches are vulnerable to
environmental conditions such as light intensity, rain, smoke, and
external noise, while suffering from privacy issues. On the contrary, RF
sensing using radar is not as vulnerable to environmental conditions
and do not significantly violate privacy. Compared to WiFi-based
sensing that operates at 2.4 GHz or 5.8 GHz, radar-based sensing
that operates in millimeter waves (e.g., at 60 GHz) can detect very
small movements of a hand/finger [3], [4].

Sensing with continuous-wave (CW) [5], [6] and frequency-
modulated CW radars [7]–[10] predominantly utilizes micro-Doppler
signatures for HGR or human activity recognition. Dynamics of
a moving object induce Doppler modulation on the reflected
signal when an RF signal strikes the object in motion [11]. CW
radars capture micro-Doppler signatures without range information
whereas frequency-modulated CW radars capture both micro-Doppler
signatures and range information. Recent works [5], [10], [12]
demonstrated that radars with multi-antenna receivers achieve higher
accuracy than single-antenna radar receivers for HGR applications.

Radio-frequency machine learning has been utilized to recognize
hand gestures with micro-Doppler signatures, where pseudo images
generated from received RF signals (e.g., spectrograms and time-
Doppler maps) were used as the input [1]. In [5], [7], convolutional
neural networks (CNNs) and in [13], auto-encoders with long short-
term memory (LSTM) were employed for HGR. With the popularity of

attention-based models with transformers, first employed in natural
language processing [14] and subsequently adopted to computer
vision tasks [15], recent works on HGR exploited CNNs together
with transformers. In [16], a deep residual three-dimensional CNN
with a transformer network was used for HGR with a dataset from [4].
A CNN with one-dimensional convolution/correlation and attention-
based network was used in [17] to classify human activities. In [18], an
attention+CNN approach via an LSTM was used to recognize human
gestures performed from a distance. A CNN feature extractor with
an attention-based network was used in [19] for person and activity
recognition. In [20], a CNN and a vision-transformer were used for
HGR for in-vehicle environments. In these transformer networks, the
output feature map of the CNN was directly fed as the input to the
transformer. Due to the lower spatial size of the output feature map
compared to the input pseudo image to the CNN, the direct feeding
leads to patches with lower spatial sizes in the transformers; however,
such patches with lower spatial size may hinder the full-potential of
transformers [15].

In this paper, we propose a vision-transformer-based architecture
for HGR using multi-antenna CW radar. The architecture consists of
three modules: 1) a convolutional encoder-decoder, 2) an attention
module with three transformer layers, and 3) a multi-layer perceptron
(MLP). Compared to previous works on transformers, our architecture
employs a convolutional decoder to up-sample the output feature map
of the convolutional encoder before feeding to the vision transformer.
This enables us to use a relatively large patch sizes in the vision
transformer as well as to train with relatively small datasets. We
employ the dataset from [5], where a two-antenna CW Doppler
radar receiver was employed, for validating our algorithms with
experiments. The proposed architecture achieves an accuracy of
98.3% which substantially surpasses the accuracy achieved in [5].

II. PROPOSED TRANSFORMER ARCHITECTURE

The proposed architecture, shown in Fig. 1, consists of a
convolutional encoder-decoder, an attention module, and an MLP.
We consider a CW radar with one transmit antenna and two receive
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Fig. 1: Proposed architecture with a five layer convolutional encoder, a two layer convolutional decoder, an attention module with three
vision-transformer layers, and an MLP for classification.

Table 1: Specifications of the convolutional layers in the encoder.

Layer Kernel size Number of filters Output size
Input - - 180 × 60 × 3
Conv 1 7 × 7 4 180 × 60 × 4
Conv 2 5 × 5 8 90 × 30 × 8
Conv 3 3 × 3 16 45 × 15 × 16
Conv 4 3 × 3 32 23 × 8 × 32
Conv 5 3 × 3 64 12 × 4 × 64

antennas together with a coherent mixer with in-phase and quadrature.
The dataset contains 14 gestures. See [5] for a system overview and
more details on the dataset. The input to the model is a three-channel
RGB image generated from spectrograms from two receiver antennas
and the angle of arrival of signals obtained from the phase difference
between two receiver antennas [5].

The convolutional encoder consists of five CNN layers, each
followed by a max pooling layer. The CNN layers learn features
required for subsequent processing with the attention module.
Furthermore, the max pooling layers reduce noise in the input and
downsample feature maps [5]. The decoder is used to increase the
spatial size of the output feature map from the encoder because the
size of the output feature map is too small to generate patches for
the attention module. The extracted features from the convolutional
encoder-decoder are divided into patches, added with positional
embeddings [14], [15] and given as the input to the attention module.
The attention mechanism allows the modeling of dependencies
regardless of their distance in the input or output sequences [14].
We employ three transformer layers in the attention module. These
transformer layers are developed using the vision-transformer models
in [15], where multi-head attention is used in each layer. The MLP is
employed as the classifier. Next, we describe each module in detail.

A. Convolutional Encoder-Decoder Architecture

Convolutional encoder-decoder is primarily used to extract features
from input images. The number of filters (kernels) and the size of
kernels of the five convolutional/correlation layers are presented in
Table 1. The size of the input is 180×60×3, and the input is normalized
to the range [0, 1] before feeding to the encoder for faster convergence
of the model. Rather than feeding the feature maps obtained from
the encoder having a size 6×2×64 directly to the attention module,
we use a convolutional decoder with transposed convolution to up-
sample the feature vectors. The convolutional decoder is used to
enhance the spatial size of feature maps. There are two transposed
convolutional layers with 64 filters with 1×1 kernels and stride 2×2.
The resultant feature map from the convolutional decoder of size
24 × 8 × 64 is fed to the attention module. .

B. Attention Module

In the attention module, shown in Fig. 2, the input feature map xu ∈
R8×24×64 is divided into a sequence of square patches xp ∈ R𝑁×(𝑝2×64) ,

where 𝑁 is the number of patches and 𝑝 is the height and width of a
patch. Note that 𝑁 can be calculated as 𝑁 = 8×24/𝑝2. We use 𝑝 = 4,
and as a result, the xu is divided into 12 patches. Then the tensor xp

is flattened to produce a tensor xf ∈ R12×1024, which is subsequently
projected linearly by a fully-connected layer to produce xe ∈ R12×16

patch embeddings. Next, patch embeddings are added with positional
embeddings xpos ∈ R12×16 to integrate the positional information [14],
[15] to generate input embeddings xi ∈ R12×16. The sequence of input
embeddings then serves as the input to the vision transformer, where
xi is normalized and fed into the multi-head attention module. Here
query Q ∈ R12×16 , key K ∈ R12×16 and value V ∈ R12×16 matrices
are generated by normalizing xi, i.e., Q = K = V = 𝑁𝑜𝑟𝑚(xi).

The multi-head attention module contains independent self-
attention modules that operate in parallel. Multi-head attention has
the advantage of allowing the model to jointly attend to information
from several representation subspaces [14]. We select the number of
heads ℎ as four with the projection dimension 𝑑𝑘 = 𝑑𝑞 = 𝑑𝑣 as 16.
The multi-head attention can be performed on Q, K and V matrices
as

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 (Q,K,V) = 𝐶𝑜𝑛𝑐𝑎𝑡
(
H1,H2, ...,H 𝑗 , ...,Hℎ

)
W𝑂 , (1)

H 𝑗 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(QW𝑄

𝑗
,KW𝐾

𝑗 ,VW𝑉
𝑗 ), (2)

where W𝑄

𝑗
∈ R𝑑𝑘×

𝑑𝑘
ℎ , W𝐾

𝑗 ∈ R𝑑𝑘 ,
𝑑𝑘
ℎ , W𝑉

𝑗
∈ R𝑑𝑘×

𝑑𝑘
ℎ and W𝑂 ∈

R𝑑𝑘×𝑑𝑘 are learnable projection matrices, and 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(Q̂, K̂, V̂) is
defined as

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(Q̂, K̂, V̂) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
Q̂K̂𝑇
√
𝑑𝑘

)
V̂. (3)

Here, Q̂, K̂, V̂ are projected matrices from Q, K, and V matrices,
respectively [14], [15]. Next, to provide a residual connection to the
transformer, the input embeddings and output from the multi-head
attention layer are added together. This tensor is then normalized and
fed into the MLP block, which consists of two layers with 32 and
16 neurons. The output of the transformer layer is fed into the next
transformer layer. In our model, we employ three transformer layers
(𝑙) as shown in Fig. 2. Finally, the output of the third transformer
layer is flattened and fed into the MLP classifier.

C. Multi-Layer Perceptron

We use an MLP as the classifier with categorical cross-entropy loss
function, which is typically employed for multi-class classification
problems. The MLP consists of two fully-connected layers followed
by a softmax layer with 14 units for the 14 gestures. Fully-connected
layers have 1024 neurons and 512 neurons with 0.5 dropout to reduce
overfitting. Softmax layer calculates corresponding class probabilities
for every class. Then the class labels (𝑦) can be predicted by
performing arg max(·) function on the softmax output that returns
the index corresponding to the largest probability from the output
class probabilities.



Fig. 2: Attention module with patch and positional embeddings and three transformer layers.

III. EXPERIMENTAL RESULTS

A. Dataset and Training

We use the dataset in [5] for experimental validation. This dataset
was collected using Infineon radar development board BGT24MTR12
operating at 24 GHz with a single transmit antenna and an array of
two receiving antennas with each receiver producing in-phase and
quadrature components. The dataset consists of 14 hand gestures:
(1) single blink, (2) double blink, (3) single push-pull, (4) double
push-pull, (5) single round, (6) double round, (7) single swipe, (8)
double swipe, (9) single thumbs up, (10) double thumbs up, (11)
single waving, (12) double waving, (13) single slide, and (14) double
slide, each having 250 samples. Each sample is a three-channel image
of size 180 × 60, where the first two channels are the spectrograms
generated from the signals received by two antennas, and the third
channel contains the angle of arrival matrix which was generated
from the phase difference between the received signals.

We use 80% of the samples for training and 20% of the samples
for testing. The validation accuracy is obtained from the five-fold
cross validation on the training dataset. Moreover, the test accuracy is
obtained by independently training the model five times. We present
the averages and the standard deviations of test accuracies in the next
subsection. The weighted adaptive moment (AdamW) optimizer is
used for training with a learning rate of 0.001 and a weight decay
of 0.0001. We train the model for 100 epochs with a batch size of
64. The transformers allow for substantially higher parallelization,
and hence we used an NVIDIA Tesla T4 GPU to train the model.

B. Experimental Results

1) Optimum Parameters of the Attention Module: The parameters
and hyper-parameters of the proposed architecture are tuned to achieve
the best validation accuracy. The height and width of a patch 𝑝 and
the number of dimensions 𝑑𝑘 in the linear projection play a critical
role in complexity and performance of the proposed architecture. We
analyze the performance of the attention module with respect to these
two parameters under three criteria as presented in Table 2. Here,
we change 𝑝 and the number of dimensions in the linear projection
with fixed parameters for the convolutional encoder-decoder and
three transformer layers. We observe that our model with 𝑝 = 4 and
𝑑𝑘 = 16 achieves the best accuracy of 98.3%. Furthermore, our model
has the least number of parameters, with a 25% reduction compared
to the next best model. It is evident that attention model with 𝑝 = 4
and and 𝑑𝑘 = 16 is the best among the potential candidates.

Table 2: Variation of the test accuracy (avg ± std), the F1-score and
the number of total and trainable parameters with the patch size (𝑝)
and the projection dimension (𝑑𝑘).

𝑝 𝑑𝑘
Total
parameters

Trainable
parameters

Test
accuracy (%)

F1-score (%)

2 16 1,375,190 1,374,942 95.2 ±0.55 95.1
2 32 2,213,574 2,213,326 95.8 ±0.65 95.8
2 64 3,982,502 3,982,254 94.9 ±0.70 94.7
4 16 797,078 796,830 98.3 ±0.50 98.4
4 32 1,057,350 1,057,102 97.7 ±0.58 97.5
4 64 1,670,054 1,669,806 95.6 ±0.39 95.5

Table 3: Variation of the test accuracy (avg ± std), the F1-score and
the number of total and trainable parameters with the number of
transformer layers (𝑙).

𝑙
Total
Parameters

Trainable
Parameters

Test
accuracy (%)

F1-score (%)

1 786,198 785,950 96.0 ±0.75 96.1
2 791,638 791,390 94.5 ±0.79 94.3
3 797,078 796,830 98.3 ±0.50 98.4
4 802,518 802,270 97.5 ±0.53 97.4
5 807,958 807,710 97.3 ±0.75 97.5
6 813,398 813,150 96.9 ±0.67 96.9

The number of transformer layers 𝑙 in the attention module is the
other important parameter. A model with more transformer layers has
the ability to extract more informative features, however, at the same
time, the model complexity increases. Moreover, more transformer
layers tend to increase the variance of the model because of the
relatively small dataset that was used. We analyzed the performance
of our model by varying 𝑙 from 1 to 6 while fixing other parameters,
and the results are presented in Table 3. We can see that the best
accuracy of 98.3% is achieved with 𝑙 = 3, which is selected for our
architecture, even though the number of total and trainable parameters
are slightly higher compared to 𝑙 = 1 and 𝑙 = 2.

2) Ablation Study: Our architecture is composed with both
convolutional encoder-decoder and an attention module. Since the
state-of-art deep neural network model for this dataset is a CNN, we
select the CNN in our model as the baseline. We employ an ablation
study to verify the improved performance with the convolutional
decoder and the attention module. We also trained the standalone
modules (decoder and attention module) on the dataset and the results
are presented in Table 4.

When training with standalone attention module, three-channel
images are split into patches with 𝑝 = 36 and provided as the input
to the encoder. Furthermore, for the combination of the convolutional
encoder and the attention module, 𝑝 = 1 and 𝑑𝑘 = 16 are selected.

We observed that the standalone convolutional encoder outper-



Table 4: Ablation study with different combinations of modules.
Architecture Test accuracy (%) F1-score (%)
Convolutional Encoder 96.7 ±0.41 96.7
Convolutional Encoder-Decoder 96.7 ±0.59 96.6
Attention Module 91.9 ±0.73 91.8
Convolutional Encoder + Attention
Module

96.0 ±0.67 95.9

Convolutional Encoder-Decoder +
Attention Module

98.3 ±0.50 98.4

Table 5: Classification performance achieved with different models.
Architecture Test accuracy Precision Recall F1-score (%)
CNN [5] 95.1 ±0.54 95.0 95.1 95.1
ResNet50 [21] 92.1 ±0.62 92.0 92.1 92.0
VGGNet16 [22] 95.0 ±0.61 94.8 94.7 94.7
Our model 98.3 ±0.50 98.4 98.4 98.4

formed the standalone attention module by 4.8 percentage points. This
is because convolution has inductive bias such as translation invariance
which lacks in transformers [15]. Therefore, when trained on small
datasets, transformers do not generalize the model. Furthermore, the
combination of the convolutional encoder and the attention module
(with 𝑝 = 1 and 𝑑𝑘 = 16) outperforms the standalone attention
module by 4.1 percentage points. More importantly, our architecture
outperforms the four other approaches. In particular, our architecture
achieves 2.3 percentage points higher accuracy than that of the
combination of the convolutional encoder and the attention module
verifying the importance of the convolutional decoder.

3) Comparison with Other Architectures: We compare accuracies
achieved with our model, CNN architecture in [5], and two popular
image classification deep neural network models: ResNet50 [21] and
VGGNet16 [22], pretrained on ImageNet dataset. We modify the last
softmax layer of both ResNet50 and VGGNet16 to have 14 classes.
In transfer learning, we train only the parameters of the last layer of
both networks while freezing other layers with pretrained parameters.
The achieved test accuracies are presented in Table 5. Our model
outperforms other three models, in particular, the original work [5] by
a margin of 2.8 percentage points. Similar to other transformer-based
architectures, a limitation of the proposed architecture is that the
number of total parameters (797,078) is considerably higher than that
of the CNN architecture (7676) [5] leading to higher computational
and memory complexities. The interference times of the CNN [5],
ResNet50 [21], VGGNet16 [22] and the proposed architectures are 35
ms, 130 ms, 170 ms, and 96 ms, respectively. The inference time of the
proposed architecture is higher than that of the CNN architecture [5]
and lower than those of the ResNet50 [21] and VGGNet16 [22]
architectures. Even though the proposed architecture has more layers
and parameters compared to the CNN [5], the inference time is only≈3
times higher due to the highly parallel implementation of the attention
module. Future work may consider the reduction of the complexity
of the proposed architecture using pruning techniques [23].

IV. CONCLUSION

We propose a vision-transformer-based architecture for HGR with
multi-antenna CW Doppler radar receivers. The convolutional decoder
up-samples the output feature map of the convolutional encoder
enabling us to feed patches with larger sizes to the attention module.
This results in improved feature extraction in the attention module.
Experimental results confirmed that the proposed architecture achieves
an accuracy of 98.3% which is substantially higher than the state-
of-the-art on the used dataset, and the ablation study confirms that
the convolutional decoder improves the accuracy on HGR.
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