
CeyMo: See More on Roads - A Novel Benchmark Dataset for Road Marking
Detection

Oshada Jayasinghe, Sahan Hemachandra, Damith Anhettigama, Shenali Kariyawasam,
Ranga Rodrigo and Peshala Jayasekara

Department of Electronic and Telecommunication Engineering,
University of Moratuwa, Sri Lanka

oshadajayasinghe@gmail.com, sahanhemachandra@gmail.com, damithkawshan@gmail.com,
shenali1997@gmail.com, ranga@uom.lk, peshala@uom.lk

Abstract

In this paper, we introduce a novel road marking bench-
mark dataset for road marking detection, addressing the
limitations in the existing publicly available datasets such
as lack of challenging scenarios, prominence given to lane
markings, unavailability of an evaluation script, lack of an-
notation formats and lower resolutions. Our dataset con-
sists of 2887 total images with 4706 road marking instances
belonging to 11 classes. The images have a high resolution
of 1920 × 1080 and capture a wide range of traffic, light-
ing and weather conditions. We provide road marking an-
notations in polygons, bounding boxes and pixel-level seg-
mentation masks to facilitate a diverse range of road mark-
ing detection algorithms. The evaluation metrics and the
evaluation script we provide, will further promote direct
comparison of novel approaches for road marking detec-
tion with existing methods. Furthermore, we evaluate the
effectiveness of using both instance segmentation and object
detection based approaches for the road marking detection
task. Speed and accuracy scores for two instance segmen-
tation models and two object detector models are provided
as a performance baseline for our benchmark dataset. The
dataset and the evaluation script will be publicly available.

1. Introduction
Understanding traffic regulations imposed by traffic

symbols such as traffic signs, traffic lights, lane and road
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Figure 1: Challenging scenarios present in our dataset. (a)
Dazzle light (b) Shadow (c) Rain (d) Night (e) Occlusion (f)
Deteriorated road markings

markings can be considered as a fundamental perception
task involved in the development of advanced driver as-
sistance systems (ADAS) and autonomous vehicles. Road
markings refer to the symbols and text painted on the road
surface, which assist the drivers to safely navigate on roads
by regulating the traffic. Developing robust road marking
detection algorithms is a challenging task due to occlusions,
illumination changes, shadows, varying weather conditions
and deterioration of road signs with time.

Though the detection and recognition of road markings
is a vital task, it is often a less researched area, mainly
due to the lack of publicly available datasets and limita-
tions present in the existing datasets. The dataset intro-
duced by [26] is used in most of the earlier work done on
road marking detection [3, 12, 14, 21]. Though their dataset
consists of 1443 images, its diversity is limited since many
adjacent frames covering the same scenario have been an-
notated. Undefined train-test split and unavailability of an
evaluation script can be identified as further issues. Some
of the recent deep learning based methods [13, 16] tackle
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Dataset Year Images Classes Location Annotation Format
Road Marking [26] 2012 1443 11 USA Bounding Box annotations (TXT)
TRoM [16] 2017 712 19 China Pixel-level annotations (PNG)
VPGNet [13] 2017 21097 17 Korea Pixel-level and Grid-level annotations (MAT)

Table 1: Summary of existing road marking detection datasets.

the lane detection and road marking detection as a single
segmentation task. Therefore, the datasets such as VPGNet
[13] and TRoM [16] contain annotations for both lane and
road markings together. However, more focus is given to the
lane detection task and the frequency of instances for road
marking classes are much less than that for lanes. More-
over, the limited annotation formats available and the lack
of proper evaluation metrics have made it difficult to accom-
plish novel developments and to compare with existing road
marking detection approaches.

Having identified the requisite for a common benchmark
for road marking detection, we introduce the CeyMo road
marking dataset consisting of 2887 images and 4706 in-
stances belonging to 11 road marking classes. As illustrated
in Figure 1, the dataset covers a wide variety of challenging
urban, sub-urban and rural road scenarios, and the test set is
divided into six categories: normal, crowded, dazzle light,
night, rain and shadow. The image annotations are provided
as polygons, bounding boxes and segmentation masks, such
that it will encourage a broad range of research in the road
marking detection domain. Furthermore, we provide two
evaluation metrics along with an evaluation script for the
dataset, facilitating direct comparison of diverse road mark-
ing detection approaches.

Most of the existing work done on road marking detec-
tion [1, 7, 3, 12, 6, 22] generate candidate regions first, and
then recognize the regions using machine learning based al-
gorithms. End-to-end deep learning based instance segmen-
tation and semantic segmentation networks have been used
in recent works, [16] and [13]. The use of end-to-end object
detector models to detect road markings is faster and more
efficient, yet a less researched approach. We investigate the
effectiveness of both instance segmentation and object de-
tection based approaches for detecting road markings in our
dataset. We use two Mask R-CNN [8] based network ar-
chitectures under the instance segmentation based approach
and two SSD [15] based object detector models, along with
inverse perspective transform (IPT) are used under the ob-
ject detection based approach. The inference speeds and
the class-wise, scenario-wise and overall accuracy values
of the four models are provided as a performance baseline.
In summary, the contributions of this paper are as follows:

• We introduce the CeyMo road marking dataset cov-
ering a wide variety of challenging scenarios and ad-
dressing the limitations present in existing publicly

available datasets. The dataset is provided with three
annotation formats, and an evaluation script to facili-
tate subsequent research on road marking detection.

• We evaluate the approaches of utilizing both instance
segmentation and object detection based network ar-
chitectures for the road marking detection task and
provide results in terms of speed and accuracy for a
set of selected models on our benchmark dataset.

The rest of the paper is organized as follows: Section
2 presents related work. In Section 3, we provide details
of our benchmark dataset, while the proposed detection
pipelines and employed methods are discussed in Section
4. The experimental details and results are presented in Sec-
tions 5 and 6, while Section 7 draws important conclusions.

2. Related Work

In this section, we analyze the existing publicly available
road marking detection datasets and different algorithms
and implementations carried out for the road marking de-
tection task.

2.1. Datasets

As the first publicly available dataset for road mark-
ing detection, [26] introduces a road marking dataset that
contains 1443 annotated images covering 11 different road
marking classes. The images have a relatively low resolu-
tion of 800× 600 and the bounding box annotations for all
road marking instances in all images are provided in a sin-
gle text file. As their main focus relies on image processing
based approaches, they do not provide separate train and
test sets, and a clear evaluation metric is not specified.

Tsinghua Road Marking Dataset (TRoM) [16] contains
712 images covering 19 different lane and road marking
classes. Pixel-level semantic segmentation based annota-
tions are provided in the PNG format. The dataset consists
of 512 images in the train set, 100 images in the validation
set and 100 images in the test set. Less number of images
and road marking instances in this dataset might be insuffi-
cient for recent deep learning based network architectures.
Furthermore, the annotation format and the evaluation met-
ric of this dataset are designed for semantic segmentation
based approaches, which limits its usability for diverse non-
lane road marking detection algorithms.
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(a) Image (JPG) (b) Polygon (JSON) (c) Bounding Box (XML) (d) Segmentation Mask (PNG)

Figure 2: Annotation formats provided with our dataset.

VPGNet [13] is a large dataset which consists of about
20000 images covering 17 lane and road marking classes.
Pixel-level and grid-level annotations of the lanes and road
markings including the vanishing point of the lanes are pre-
sented in the MAT file format. As the evaluation metric,
the intersection over union (IoU) of the predicted cells with
the ground truth grid cells are considered. However, only 8
road marking classes are covered and 52975 instances are
annotated as a single class named “other road markings”.
Their main focus lies on vanishing point guided lane detec-
tion, and this dataset is not widely used for road marking
detection in subsequent research.

Most of the other implementations [7, 22, 12, 6] use their
own datasets, which are not publicly available. A summary
of the three main publicly available road marking detection
datasets are presented in Table 1.

2.2. Algorithms

Most of the work done on road marking detection rely
on classical image processing techniques combined with
simple machine learning algorithms. The usual detection
pipeline includes image pre-processing, regions of interest
(ROI) generation, feature extraction, and classification us-
ing machine learning algorithms. A review of non-lane road
marking detection and recognition algorithms is present in
[18]. Rectifying the original image using inverse perspec-
tive transform (IPT) [26, 7, 14, 12] is a commonly used pre-
processing technique. As an alternative to IPT, [22] sug-
gests that the search area can be reduced using the lane in-
formation. However, this may result in poor performance
since road marking detection accuracy directly depends on
lane detection accuracy.

Maximally stable extremal regions (MSER) [17] are
used as possible candidate regions in [26], and histogram
of oriented gradients (HOG) feature descriptors are used to
build a template pool for each class. At inference time, each
image is compared with all template images to assign the
classes. However, supervised learning methods usually per-
form better than template matching methods, especially in
complex scenarios. MSER [17] regions and HOG features
have also been used with a support vector machine (SVM)
classifier in [7], to recognize symbol based road markings.
A separate optical character recognition (OCR) algorithm is

used to recognize text based road markings. However, hav-
ing different approaches for different road markings may re-
sult in a computational redundancy. Both of these methods
include HOG feature extraction, which is a time consuming
process.

Binarized normed gradients (BING) [4] objectiveness
estimation algorithm is used to generate possible road mark-
ing region proposals in [3]. They use PCANet [2] and SVM
integrated classifier to recognize the road markings. The
main drawback of this method is the lower localization ac-
curacy since BING [4] usually results in larger proposal re-
gions. Logistic regression has been used with PCANet [2]
in [1], to improve the classification accuracy. A shallow
convolutional neural network (CNN) is also introduced as
an alternative classifier for road marking recognition. Af-
ter identifying MSER [17] regions, a density based cluster-
ing algorithm is used to merge them to obtain road mark-
ing proposal regions for the classifier. However, they use
many pre-processing techniques to obtain region proposals
and the PCANet [2] or the shallow CNN classifier is only
used for the recognition part.

End-to-end deep learning based networks have not been
widely used in the domain of road marking detection.
A convolutional neural network model which combines
ResNet-101 [9] and a pyramid pooling ensemble, is used
in [16], to obtain lanes and road markings as semantic seg-
mentation outputs. Their architecture achieves average re-
sults on the TRoM [16] dataset which can be considered as
a performance baseline. VPGNet [13] is a CNN based ar-
chitecture for detecting lanes and road markings simultane-
ously. They address the road marking detection as a grid re-
gression task followed by grid sampling and box clustering
as post-processing techniques for merging grid cells. How-
ever, their focus is more on lane detection and vanishing
point prediction tasks, and quantitative results are only pro-
vided for four road marking classes.

3. Benchmark Dataset

In this section, we present the CeyMo road marking
benchmark dataset including the data collection and annota-
tion processes, dataset statistics and the evaluation metrics.
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Figure 3: (a) Frequency of each class in the dataset. (b) Proportion of each scenario in the test set.

Scenario No. of Images Percentage
Normal 303 38.45%
Crowded 109 13.83%
Dazzle Light 56 7.11%
Night 110 13.96%
Rain 136 17.26%
Shadow 74 9.39%

Table 2: Number of images for each scenario in the test set.

3.1. Data Collection

Modern traffic sign and road marking datasets are cre-
ated using footage from vehicles with specifically mounted
cameras [27, 5] or frames taken from street view services
such as Google or Tencent [28]. We collect video footage
from two cameras mounted inside of four vehicles to cap-
ture a wide range of scenarios including urban, sub-urban
and rural areas under different weather and lighting condi-
tions. The frames which contain road markings are then
extracted from the recorded video footage.

3.2. Data Annotation

Road markings belonging to 11 classes are manually an-
notated as polygons using the labelme [25] annotation tool.
Each image has a JSON file which contains the coordi-
nates of the polygons enclosing the road markings present
in that image. In addition to the polygon annotations in the
JSON format, we also provide bounding box annotations in
the XML format as well as pixel-level segmentation masks
in the PNG format to facilitate different road marking de-
tection approaches. The three annotation formats provided
with the dataset are visualized in Figure 2.

3.3. Dataset Statistics

Our new benchmark consists of 2887 total images hav-
ing a resolution of 1920× 1080. The dataset is divided into
the train set and the test set, which comprises 2099 images
and 788 images, respectively. The benchmark covers 11
different road marking classes and the number of instances

Road Marking Class Train Set Test Set Total
Straight Arrow 1088 352 1440
Left Arrow 118 44 162
Right Arrow 260 92 352
Straight-Left Arrow 180 61 241
Straight-Right Arrow 58 22 80
Diamond 770 277 1047
Pedestrian Crossing 611 228 839
Junction Box 128 44 172
Slow 72 28 100
Bus Lane 61 21 82
Cycle Lane 142 49 191
Total 3488 1218 4706

Table 3: Number of instances for each class in the dataset.

present in each class is shown in Table 3. There is an in-
herent class imbalance in the dataset which is highlighted
in Figure 3a.

The 788 images in the test set are divided into 6
categories including normal and 5 challenging scenarios:
crowded, dazzle light, night, rain and shadow. The number
of images and the proportion of each category are shown in
Table 2 and Figure 3b. It can be observed that the 5 chal-
lenging scenarios account for the majority (61.55%) of the
test set.

3.4. Evaluation Metrics

We use F1-score and Macro F1-score as the evaluation
metrics of our road marking dataset. Intersection over union
values between the predictions and the ground truth are cal-
culated and if IoU is greater than 0.3, the corresponding
prediction is considered as a true positive. The total number
of true positives (TP ), false positives (FP ) and false neg-
atives (FN ) are used to calculate the precision, recall and
F1-measure as follows:

precision =
TP

TP + FP
(1)
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Figure 4: (a) Proposed object detection based network architecture. The inverse perspective transform is used to obtain the
bird’s eye view of the road which will be fed to the object detector for detecting road markings as bounding boxes. The
detections are mapped to 4-sided polygons in the original image using the inverse of the IPT matrix. SSD-MobileNet-v1 [15,
10] and SSD-Inception-v2 [15, 24] are evaluated as the object detectors. (b) Proposed instance segmentation based network
architecture. Two Mask R-CNN [8] based networks with Inception-v2 [24] and ResNet-50 [9] backbones are evaluated for
detecting road markings on the input images as segmentation masks.

recall =
TP

TP + FN
(2)

F1-score =
2× precision× recall

precision+ recall
(3)

Macro F1-score is calculated as the mean of the indi-
vidual F1-scores of the 11 classes present in our dataset as
follows:

Macro-F1-score =
1

C

C∑
i=1

F1-scorei (4)

Macro F1-score gives same importance for all classes
regardless of the frequencies they appear in the dataset.
Therefore, it will be low for models which only perform
well on common classes.

The evaluation script which calculates class-wise,
scenario-wise and overall precision, recall and F1-score val-
ues, and the Macro F1-score, will be made publicly avail-
able facilitating direct comparison of different road marking
detection algorithms.

4. Methodology
In this section, we explain our two detection pipelines

under object detection and instance segmentation based ap-
proaches, that are used to detect road markings on the
CeyMo road marking dataset.

4.1. Object Detection Approach

Our object detection based model architecture for the
road marking detection task is shown in Figure 4a. Each im-
age is first transformed using the inverse perspective trans-
form (IPT) to obtain a bird’s eye view of the road area. IPT
reduces perspective deformation of the captured images and
it also removes a larger area of the background and the road
markings become more prominent in the resultant image.
The inverse perspective transform is a homography trans-
formation given by the following equations, where M is the
relevant homography matrix.

Destination[x̂, ŷ, :] = Source[x, y, :] (5)

where,

x̂ =
M11x+M12y +M13

M31x+M32y +M33
(6)

ŷ =
M21x+M22y +M23

M31x+M32y +M33
(7)

An end-to-end object detector model is then used to de-
tect road markings on the inverse perspective transformed
images. We evaluate the performance of two object detector
models for the road marking detection task, SSD [15] with
MobileNet-v1 backbone [10] and SSD [15] with Inception-
v2 [24] as the backbone. The input resolution of both the
models is set to 500 × 500. These object detector models
output the road marking detections as bounding boxes on
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Category SSD-MobileNet-v1 SSD-Inception-v2 Mask-RCNN-Inception-v2 Mask-RCNN-ResNet50
[15, 10] [15, 24] [8, 24] [8, 9]

Normal 86.57 87.10 93.20 94.14
Crowded 79.45 82.51 82.04 85.78
Dazzle light 84.97 85.90 86.06 89.29
Night 83.08 84.85 92.59 91.51
Rain 73.68 81.87 87.50 89.08
Shadow 85.25 86.53 85.60 87.30
Total 82.90 85.16 89.04 90.62
Speed (FPS) 83 61 42 13

(a)

Class SSD-MobileNet-v1 SSD-Inception-v2 Mask-RCNN-Inception-v2 Mask-RCNN-ResNet50
[15, 10] [15, 24] [8, 24] [8, 9]

Straight Arrow 73.51 77.39 86.00 88.33
Left Arrow 66.67 73.97 59.70 74.36
Right Arrow 75.64 81.93 84.75 90.40
Straight-Left Arrow 65.22 65.93 84.55 89.47
Straight-Right Arrow 62.50 58.06 74.29 66.67
Diamond 87.82 88.58 92.05 91.05
Pedestrian Crossing 94.95 95.44 96.72 96.86
Junction Box 82.50 90.70 92.13 96.63
Slow 88.46 90.20 92.59 94.34
Bus Lane 98.00 100.00 93.33 91.26
Cycle Lane 95.00 89.47 87.18 92.31
Macro F1-Score 80.93 82.88 85.75 88.33

(b)

Table 4: Road marking detection results. (a) For each of the detection models scenario-wise F1-scores, overall F1-score, and
inference speed in frames per second (FPS) are listed. The inference speed is measured by taking the average FPS value for
the 788 test images. (b) For each of the detection models class-wise F1-scores and the Macro F1-score are listed.

the inverse perspective transformed image. These bounding
box detections are transformed to the original image domain
as 4-sided polygons using the inverse of the IPT homogra-
phy matrix (M ) as the final step.

4.2. Instance Segmentation Approach

Figure 4b depicts the model architecture used for road
marking detection under the instance segmentation based
approach. The goal of instance segmentation is to predict
object instances and their per-pixel segmentation masks.
For this task, we employ the widely used Mask R-CNN [8]
network architecture with two backbones, Inception-v2 [24]
and ResNet-50 [9]. Mask R-CNN [8] extends the Faster R-
CNN [19] architecture by predicting a segmentation mask,
in addition to the bounding box, for each region of interest
(RoI) identified.

Since instance segmentation networks usually have low
inference speeds, we feed the input images directly to
the model, after resizing them into a lower resolution of
500 × 500, without any additional pre-processing steps.
The network outputs both bounding boxes and segmenta-
tion masks for the road marking detections. Yet, our interest

only lies in the segmentation masks, from which the convex
hulls could be obtained for evaluation purposes.

5. Experiments
In this section, we describe the experiments carried out,

specifically the data augmentation process and the imple-
mentation details.

5.1. Data Augmentation

As a step towards mitigating the effect of the class imbal-
ance problem, we follow a simple data augmentation tech-
nique during training to increase the number of instances of
less frequent signs. It can be observed that left arrow and
straight-right arrow classes have comparatively fewer in-
stances than their mirrored classes, right arrow and straight-
left arrow.

Therefore, we horizontally flip the images, which in-
clude arrows to obtain the mirrored signs. However, since
flipping instances of cycle lane, bus lane and slow road
marking classes would lose their meaning, images with
those instances are avoided. Furthermore, we randomly
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Figure 5: Visualization of road marking detection results on the CeyMo road marking dataset. The top two rows represent
detections under normal conditions and the next five rows represent detections under challenging conditions: crowded, dazzle
light, night, rain and shadow. (a) Input image (b) Ground truth (c) SSD-MobileNet-v1 [15, 10] (d) SSD-Inception-v2 [15, 24]
(e) Mask-RCNN-Inception-v2 [8, 24] (f) Mask-RCNN-ResNet50 [8, 9]

change the brightness, saturation, contrast and hue of the
input images while training the detection models.

5.2. Implementation Details

For the training and testing of our detection algorithms,
we use a computational platform comprising an Intel Core
i9-9900K CPU and a Nvidia RTX-2080 Ti GPU. We use
TensorFlow Object Detection API [11] to train the two
Mask R-CNN models [8] under the instance segmentation
based approach and the two SSD [15] models under the ob-
ject detection based approach.

For the training of the detection models, the follow-
ing configurations are used. For both SSD-MobileNet-v1
[15, 10] and SSD-Inception [15, 24] models, RMSProp [20]
optimization is used with an initial learning rate of 0.004
and a momentum of 0.9, and the batch size is set to 24. For
Mask-RCNN-Inception [8, 24] model, SGD with momen-
tum [23] optimization is used with an initial learning rate
of 0.0001 and a momentum of 0.9, and the batch size is set
to 4. For Mask-RCNN-ResNet50 [8, 9] model, SGD with

momentum [23] optimization is used with an initial learn-
ing rate of 0.0003 and a momentum of 0.9, and the batch
size is set to 2.

6. Results

In this section, we present the qualitative and quantitative
results we obtained. The performance of the two SSD [15]
based object detection models and the two Mask R-CNN
[8] based instance segmentation networks on our CeyMo
road marking benchmark dataset is presented in Table 4a
and Table 4b.

Table 4a shows the F1-score values of each model for
each of the six categories and the overall F1-score for the
test set. The inference speed of each model is also listed
in frames per second (FPS). It can be observed that Mask
R-CNN [8] models under the instance segmentation based
approach have been able to achieve better results than the
SSD [15] models under the object detection based approach.
Mask-RCNN-ResNet50 [8, 9] model has been able to out-
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perform the other models in normal, crowded, dazzle light,
rain and shadow categories while Mask-RCNN-Inception-
v2 model [8, 24] achieves the highest F1-score for the
night category. Although the Mask-RCNN-ResNet50 [8, 9]
model has the highest overall F1-score of 90.62, its infer-
ence speed of 13 FPS is comparatively low which becomes
crucial in real-time applications. Mask-RCNN-Inception-
v2 [8, 24] model gives a better trade-off between the ac-
curacy and the speed, while SSD-MobileNet-v1 [15, 10]
and SSD-Inception-v2 [15, 24] models along with the in-
verse perspective transform, result in a moderate accuracy
at a higher inference speed. It can be also observed that all
models perform better in the normal category and the F1-
score values are comparatively lower in the five challenging
scenarios.

The F1-score values for the 11 road marking classes and
the Macro F1-score of each model are listed in Table 4b.
Mask-RCNN-ResNet50 [8, 9] model achieves better results
for most of the classes with a Macro F1-score of 88.33. It
can also be observed that the Macro F1-score values of all
models are lower than the overall F1-score values by around
2 percent or more, which implies that there is a tendency of
the models to perform better in certain classes than others.
Pedestrian crossings which can be found frequently within
the dataset and capture a larger area of the road, are well
detected by all models. Classes like slow, bus lane and cycle
lane have comparatively lower number of instances in the
dataset. Nevertheless, all four models have been able to
detect those classes with a good accuracy, due to the distinct
shapes and features of those classes. Although we increase
the number of arrow signs in the train set through the data
augmentation process, the accuracy values of arrow signs
are low, when compared with other road markings. This
can be mostly due to the similarity of arrow sign classes
within themselves, as well as with the lane markings on the
road surface.

Qualitative results obtained by our two object detection
models and the two instance segmentation networks are vi-
sualized in Figure 5, along with the input images and the
ground truth for the six categories in the test set. It can be
observed that the Mask R-CNN [8] models under the in-
stance segmentation based approach perform better, espe-
cially in challenging scenarios. Furthermore, the segmen-
tation masks used in those models result in more precise
localization of road markings than 4-sided polygons used in
the object detection based approach.

7. Conclusion
In this work, we introduced the CeyMo road marking

dataset for road marking detection, addressing the limita-
tions present in the existing datasets. The novel benchmark
dataset consists of 2887 images taken under different traffic,
lighting and weather conditions, covering 4706 road mark-

ing instances belonging to 11 road marking classes. We
provide road marking annotations as polygons, bounding
boxes and segmentation masks to facilitate a wide range of
road marking detection algorithms. The evaluation metrics
provided along with the evaluation script will enable direct
comparison of future work done on road marking detec-
tion. Furthermore, we evaluated the effectiveness of road
marking detection firstly, using object detectors on inverse
perspective transformed images and secondly, using end-to-
end instance segmentation based networks. The speed and
accuracy scores for two object detectors and two instance
segmentation network architectures are provided as a per-
formance baseline for the benchmark dataset. We believe
that the CeyMo road marking dataset can be used to design
and evaluate novel road marking detection algorithms step-
ping towards real-time, accurate road marking detection in
challenging environments in the future.
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