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Abstract—Recent work done on lane detection has been able
to detect lanes accurately in complex scenarios, yet many fail to
deliver real-time performance specifically with limited computa-
tional resources. In this work, we propose SwiftLane: a simple
and light-weight, end-to-end deep learning based framework,
coupled with the row-wise classification formulation for fast
and efficient lane detection. This framework is supplemented
with a false positive suppression algorithm and a curve fitting
technique to further increase the accuracy. Our method achieves
an inference speed of 411 frames per second, surpassing state-of-
the-art in terms of speed while achieving comparable results in
terms of accuracy on the popular CULane benchmark dataset.
In addition, our proposed framework together with TensorRT
optimization facilitates real-time lane detection on a Nvidia Jetson
AGX Xavier as an embedded system while achieving a high
inference speed of 56 frames per second.

,Index Terms—lane detection, deep learning, convolutional
neural network, row-wise classification, embedded system

I. INTRODUCTION

Lane detection is a pivotal element in driver assistance
systems and autonomous vehicles as lane marker informa-
tion is essential in maneuvering the vehicle safely on roads.
Detecting lanes in real-world scenarios is a challenging task
due to adverse weather, lighting conditions and occlusions.
As the computational budget available for lane detection in
the aforementioned systems is limited, a light-weight, fast and
accurate lane detection system is crucial.

Recent lane detection approaches fall into two broad classes:
semantic segmentation based methods and row-wise classifica-
tion based methods. While semantic segmentation based meth-
ods [1]–[3] provide competitive results in terms of accuracy,
a common drawback is the reduced speed due to per-pixel
classification and large backbones. On the other hand, row-
wise classification based methods [4], [5] focus on improving
speed and obtaining real-time performance. However, the
inherent limitation of a grid-based representation in row-wise
classification methods and the bias towards overfitting due to
the similar structure of lanes in the training set may result in
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reduced accuracy, highlighting the speed-accuracy trade-off in
lane detection models.

In this work, we propose a simple, light-weight, end-to-end
deep learning based lane detection framework with a smaller
backbone and a lesser number of multiply-accumulate opera-
tions (MACs) following the row-wise classification approach.
The inference speed is significantly increased by reducing
the computational complexity, and the light-weight network
architecture is less prone to overfitting. Moreover, we also
introduce a false positive suppression algorithm based on
the length of the lane segment and the Pearson correlation
coefficient, and a second-order polynomial fitting method as
post-processing techniques to improve the overall accuracy of
the system. Comprehensive experimental results are shown on
the CULane [1] benchmark dataset, accompanied by a com-
parison of our results with other state-of-the-art approaches.
An ablation study shows how each of the proposed methods
contributes to the speed and the accuracy.

Furthermore, we deploy our lane detection framework on
a Nvidia Jetson AGX Xavier integrated with Robot Oper-
ating System (ROS) [6] to demonstrate the capability of
our light-weight network architecture to perform real-time
lane detection in an embedded system. The trained model is
optimized and quantized using TensorRT for increasing the
inference speed. We also provide qualitative results for locally
captured street view images to showcase how well our model
generalizes for the task of lane detection.

In summary, our contributions are as follows: we introduce
a novel, light-weight, end-to-end deep learning architecture
supplemented with two effective post-processing techniques
for fast and efficient lane detection. Our proposed method
drastically improves the inference speed, reaching 411 frames
per second (FPS) to surpass state-of-the-art while achieving
comparable accuracy. We further optimize the trained model
using TensorRT and implement it on an embedded system in
the ROS ecosystem. The overall system achieves an inference
speed of 56 FPS, demonstrating the capability of our method
to perform real-time lane detection.

II. RELATED WORK

Initially, lane detection research mainly focused on clas-
sical image processing algorithms, such as using basic hand-
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Fig. 1: Proposed model architecture. ResNet-14 backbone generates feature maps from the input image. A 2× 2 max pooling
layer and a 1× 1 convolutional layer are used to reduce the spatial dimensions and the number of channels. Resulting feature
maps are flattened and passed through two fully-connected layers with dropout layers in between. The model predictions are
fed through false positive suppression and curve fitting modules to obtain the lane output.

crafted features [7]–[9], color-based approaches [10], [11], and
traditional feature extraction methods with machine learning
algorithms such as decision trees and support vector machines
[12], [13]. Although these methods are computationally less
expensive, the performance is poor in complex scenarios with
occlusions, shadows and different lighting conditions.

Recent deep learning based approaches outperform classical
methods and can be further divided into two broad classes:
semantic segmentation based methods and row-wise classifica-
tion based methods. In semantic segmentation based methods
[1]–[3], classification is done on a per-pixel basis by classify-
ing each pixel as lane or background. A special convolution
method known as slice-by-slice convolution is proposed in
SCNN [1], which enables information propagation within the
same layer to improve the detection of long thin structures
such as lanes. CurveLane-NAS [2] focuses on capturing long-
range contextual information and short-range curved trajectory
information using a lane-sensitive neural architecture search
framework. Attention maps extracted from different layers of a
trained model which contain important contextual information
are used as distillation targets for the lower layers in SAD
[3]. The pixel-wise computation in semantic segmentation
based approaches increases the computational complexity and
reduces the inference speed drastically.

Row-wise classification based methods [4], [5] have been
able to progress towards real-time lane detection by addressing
the computational complexity problem. In these approaches,
the input image is divided into a grid and for each row,
the model outputs the probability of each cell belonging
to a lane. This approach is first introduced in E2E-LMD
[4] by converting the output of the segmentation backbone
to a row-wise representation using a special module called
horizontal reduction module. The no-visual-clue problem in
lane detection is addressed in UltraFast [5] using a low-cost,
row-wise classification based network, which utilizes global
and structural information. Although their approach achieves
state-of-the-art speed of 322.5 FPS, the accuracy is low when
compared with other methods.

Almost all of the above mentioned algorithms have been
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Fig. 2: Lane Representation. The region comprising lanes is
divided into a pre-defined number of row anchors (h) and
gridding cells (w).

implemented in high-end computational platforms and im-
plementation of lane detectors in embedded systems is com-
paratively a less researched area. A lane detection algorithm
optimized for PXA255 embedded device has been introduced
by [14] which achieves a frame rate of 13 FPS. PathMark [15]
is another lane detection algorithm running at 13 FPS in a TI-
OMAP4430 based embedded system. A Nvidia Jetson-TK1
board has been used in [16] for implementing a real-time lane
detection and departure warning system at 44 FPS. In [17], a
lane detection and modeling pipeline has been presented for
embedded platforms which delivers real-time performance in
a Jetson-TX2 embedded device. All of these approaches rely
on classical image processing based techniques and do not
perform well in complex scenarios when compared with deep
learning based approaches.

III. METHODOLOGY

In this section, we present the lane representation mecha-
nism, a detailed explanation of our model architecture and the
algorithms used to further increase the model accuracy.

A. Lane Representation

We address the lane detection task as a row-wise classifi-
cation problem following the formulation introduced by [5].
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The region of the image which contains lanes is divided into
a pre-defined number of row anchors (h) and each row anchor
is divided into a pre-defined number of gridding cells (w) as
shown in Fig. 2. The number of lanes (c) is pre-defined, and
for each lane, the lane locations are represented by a h × w
grid. An additional cell is attached to the end of each row
anchor to indicate the absence of a particular lane in that row
anchor.

B. Model Architecture

We propose a simple end-to-end light-weight convolutional
neural network based model architecture for the lane detection
task as shown in Fig. 1. The first stage of the proposed
model is the backbone which extracts features from the input
image. As the backbone we use “ResNet-14” which is obtained
by dropping the last four convolutional layers of ResNet-
18 [18] to increase the speed by reducing the computational
complexity.

The output of the backbone is a feature representation of
the image which would then be fed into a 2× 2 max pooling
layer for dimensionality reduction in the spatial dimensions.
For dimensionality reduction in the channel dimension a 1×1
convolution layer is applied. This output is flattened to obtain a
one-dimensional tensor which is then passed through two fully
connected layers to obtain the output tensor. Dropout layers
are implemented in between to further prevent the network
from overfitting.

The output tensor represents the score of each gridding cell
(including the no lane cell) belonging to each lane in each row
anchor. Si,j,k represents the score of kth gridding cell in jth

row anchor belonging to ith lane which can be obtained by,

Si,j,k = f(X), s.t. i ∈ [1, c], j ∈ [1, h], k ∈ [1, w + 1] (1)

Here, f , X , c, h and w stands for the classification model, the
input image, the number of lanes, the number of row anchors
and the number of gridding cells, respectively. The lane points
can then be extracted by choosing the gridding cell with the
highest score in each row anchor for each lane. If the last
gridding cell is not the cell with the highest score, the location
of ith lane in jth row anchor is given by,

Loci,j = argmaxk (Si,j,k) , s.t. k ∈ [1, w] (2)

Having the highest score in the last gridding cell implies that
the considered lane is not present in the selected row anchor.
For training the model, we define the classification loss as the
negative log likelihood loss which is given by,

Lcls =

C∑
i=1

h∑
j=1

−αi,j,Ti,j
· log

(
Pi,j,Ti,j

)
(3)

Here, Ti,j denotes the correct location (gridding cell) of ith

lane in jth row anchor as per the ground truth and Pi,j,k

denotes the probability of kth gridding cell in jth row anchor
belonging to ith lane which can be obtained by,

Pi,j,k = softmax(Si,j,k) (4)

αi,j,k is the modulating factor for the focal loss adjustment as
mentioned in [19].

αi,j,k = (1− Pi,j,k)
γ (5)

C. False Positive Suppression

We propose two post processing techniques to reduce false
detections in the model output. First, we remove all instances
of small lane segments which have a less number of detected
lane points than a threshold value. Second, we remove all
instances of lanes which have a considerable deviation from
a straight line. Pearson correlation coefficient measures the
linear correlation between two variables which is given by
(6), where xi and yi are the sample data points of x and y
variables and x̄ and ȳ are the respective means.

r =

∑
(xi − x̄)(yi − ȳ)√∑
(xi − x̄)2(yi − ȳ)2

(6)

In our case, Pearson correlation coefficient of row anchors
and gridding cells of an identified lane segment is used to
measure how well the lane points can be represented using a
straight line. Since majority of the lanes have a slight deviation
from a straight line, the Pearson correlation coefficient should
be close to one in magnitude. Therefore, we remove all
instances of lanes which have a Pearson correlation coefficient
below a threshold value.

D. Curve Fitting

In most of the scenarios, lanes are straight lines or curve
segments with small curvature values. Therefore, lanes can be
approximated to a greater extent by second-order polynomials.
Since we use a finite number of gridding cells, lanes in the
model output are represented in the discrete domain. Second-
order polynomial fitting can be used to replace these discrete
gridding cell numbers by continuous values which results in
smooth lane segments.

IV. EXPERIMENTS

In this section, we present the details about the dataset used
to evaluate our model, the training process and a detailed
description on the embedded system implementation for real-
time applications.

A. Dataset Description

For the training and quantitative evaluation of our model,
we use the publicly available CULane [1] benchmark dataset
which is one of the largest lane detection datasets with
133,235 total frames having a resolution of 1640 × 590. The
dataset is divided into the train set, the validation set and
the test set which comprises 88,880 frames, 9,675 frames
and 34,680 frames, respectively. The dataset covers several
complex scenarios and the test images are divided into 9
categories: Normal, Crowded, Dazzle light, Shadow, No line,
Arrow, Curve, Crossroad and Night.

As the evaluation metric, F1-measure is used to compare
the performance in the CULane benchmark. Each lane is
represented by a 30-pixel-width line and each prediction which
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TABLE I: Comparison of F1-measure and speed (FPS) on CULane with state-of-the-art methods

Model Normal Crowd Dazzle Shadow No Line Arrow Curve Cross Night Total FPS GMACs
SCNN [1] 90.6 69.7 58.5 66.9 43.4 84.1 64.4 1990 66.1 71.6 7.5 -
ENet-SAD [3] 90.1 68.8 60.2 65.9 41.6 84.0 65.7 1998 66.0 70.8 75 -
ERFNet-E2E [4] 91.0 73.1 64.5 74.1 46.6 85.8 71.9 2022 67.9 74.0 - -
CurveLane-S [2] 88.3 68.6 63.2 68.0 47.9 82.5 66.0 2817 66.2 71.4 - 9.0
CurveLane-M [2] 90.2 70.5 65.9 69.3 48.8 85.7 67.5 2359 68.2 73.5 - 33.7
CurveLane-L [2] 90.7 72.3 67.7 70.1 49.4 85.8 68.4 1746 68.9 74.8 - 86.5
PINet [20] 90.3 72.3 66.3 68.4 49.8 83.7 65.6 1427 67.7 74.4 25 -
UltraFast-18 [5] 87.7 66.0 58.4 62.8 40.2 81.0 57.9 1743 62.1 68.4 361 8.4
UltraFast-34 [5] 90.7 70.2 59.5 69.3 44.4 85.7 69.5 2037 66.7 72.3 217 16.9
RESA-34 [21] 91.9 72.4 66.5 72.0 46.3 88.1 68.6 1896 69.8 74.5 45.5 -
RESA-50 [21] 92.1 73.1 69.2 72.8 47.7 88.3 70.3 1503 69.9 75.3 35.7 -
LaneATT-18 [22] 91.2 72.7 65.8 68.0 49.1 87.8 63.8 1020 68.6 75.1 250 9.3
LaneATT-34 [22] 92.1 75.0 66.5 78.2 49.4 88.4 67.7 1330 70.7 76.7 171 18.0
LaneATT-122 [22] 91.7 76.2 69.5 76.3 50.5 86.3 64.1 1264 70.8 77.0 26 70.5
FOLOLane [23] 92.7 77.8 75.2 79.3 52.1 89.0 69.4 1569 74.5 78.8 40 -
SwiftLane (Ours) 90.46 71.07 62.51 73.69 46.17 85.00 64.92 1096 68.77 74.03 411 6.52

has an intersection over union (IoU) greater than 0.5 with the
ground truth is considered as a true positive. Then F1-measure
is calculated as follows where TP , FP and FN stands for
true positives, false positives and false negatives, respectively.

precision =
TP

TP + FP
(7)

recall =
TP

TP + FN
(8)

F1 −measure =
2× precision× recall

precision+ recall
(9)

B. Model Training

Each image in the CULane dataset is resized to 288× 800
from the input resolution of 590×1640. We use 36 row anchors
(h) and 150 gridding cells (w) to represent the area which
contains lanes (height ranging from 260 to 590 in the original
image). The number of lanes (c) is set to 4. The threshold for
false positive suppression using number of lane points is set
to 12, and the threshold for false positive suppression using
the Pearson correlation coefficient is set to 0.995.

As the optimization algorithm, SGD with momentum [24]
is used with an initial learning rate of 0.1, a momentum of
0.9 and a weight decay of 1 × 10−4 for training the model.
The model is trained for 50 epochs and at 15th, 25th, 35th and
45th epochs, the learning rate is multiplied by a factor of 0.3.
For training and testing our model we use a computational
platform comprising of an Intel Core i9-9900K CPU and
Nvidia RTX-2080 Ti GPU. All experiments are carried out
using PyTorch [25] based on the implementation of [5].

As a measure to make the model more robust and gener-
alized without overfitting, we apply two data augmentation
techniques while training the model. First, we fit a random
affine transformation to each image which comprises a random

PyTorch
Model

ONNX
Model

TensorRT
Engine

Fig. 3: Optimization of the lane detection model. The trained
PyTorch model is converted to a TensorRT engine.

Fig. 4: RQT graph for the implementation of the lane detection
system in the ROS ecosystem.

rotation, a random horizontal shift and a random vertical shift.
Second, we use the colour jitter augmentation technique to
randomly change the brightness and the contrast of the input
image.

C. Implementation on the Embedded System

As the embedded system, we use a Nvidia Jetson AGX
Xavier which possesses the required processing power to run
deep learning based algorithms with the help of CUDA and
Tensor cores. We further optimize our lane detection model
for the embedded system by generating a TensorRT engine as
shown in Fig. 3. First, the trained PyTorch model is converted
to ONNX file format and the ONNX model is then used by
the ONNXParser in TensorRT Python API to generate the
TensorRT engine. We evaluate the use of both single-precision
floating point (FP32) and half-precision floating point (FP16)
formats for building the TensorRT engine.

We implement the lane detector system in the Robot Op-
erating System (ROS) [6] ecosystem as shown in Fig. 4.
The image feeder node retrieves frames from a given video
file and publishes each frame to the input frame topic. The
lane detector node detects lanes in the current frame and
publishes the detections to the lane detections topic. For a
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Fig. 5: Visualization of lane detection result on locally captured images. The first six images show accurate detections while
the last two show failure cases including false detections and undetected lanes.

(a) Input Image (b) Ground Truth (c) Prediction

Fig. 6: Visualization of results on CULane. The nine rows
represent the nine scenarios in CULane; Normal, Crowded,
Dazzle light, Shadow, No line, Arrow, Curve, Crossroad and
Night respectively.

faster inference speed, we use the FP16 quantized TensorRT
engine for the lane detection task. The visualizer node marks
the detected lane points in the current frame and publishes
the resultant image to the output frame topic. The RViz
visualization tool is used to visualize the lane detections in
real-time.

V. RESULTS

The performance of our method on the CULane benchmark
dataset is compared against state-of-the-art lane detection

TABLE II: Performance on the embedded system

Model F1-measure Speed (FPS)
Pytorch Model 74.02 23
TensorRT Engine (FP32) 74.02 35
TensorRT Engine (FP16) 74.03 56

approaches in Table I. The number of false positives are
displayed under the “Cross” category since there are no true
positives in the ground truth for that category. The inference
speed is measured by taking the average frames per second
(FPS) value for 1000 runs including the forward pass of
the model and the post-processing steps. The number of
multiply-accumulate operations in billions is represented in
the “GMACs” column. For a fairer comparison, we measured
the speed of [5] under the same conditions as ours.

It can be observed that while being the fastest, our method
achieves competitive results with other state-of-the-art meth-
ods in F1-measure. Our method also uses the least number
of multiply-accumulate operations (MACs) which highlights
the efficiency of our formulation. The low number of false
positives in the “Cross” category validates the effectiveness
of our false positive suppression technique. Compared to the
segmentation based methods [1], [3], the inference speed im-
proves substantially while providing better results at the same
time. When compared with [5], which is the fastest among
other approaches, our method achieves better results with a
6.6% increase in F1-measure. While we obtain comparable
performance with [2] and [4], a direct comparison cannot be
made in terms of the speed, as their inference speeds are
not mentioned. Although [20], [21], [22] and [23] achieves
on par or better results than our method, the low inference
speeds of their best performing models act as a barrier for
real-time implementation especially on resource constrained
environments.

The performance of the Pytorch model and the generated
FP32 and FP16 TensorRT engines on the Nvidia Jetson AGX
Xavier are shown in Table II in terms of the F1-measure
and speed. The inference speed is calculated as the average
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TABLE III: Ablation study results on CULane

Proposed Method F1-measure Speed (FPS)
Base Model 71.25 502
+ FP Suppression (length) 72.76 489
+ FP Suppression (linearity) 73.90 447
+ Curve Fitting 74.03 411

frames per second value for inferencing a locally captured
video within the ROS ecosystem. It can be observed that while
the accuracy stays almost the same, the inference speed has
increased significantly by optimizing and quantizing the model
through TensorRT.

Qualitative results obtained by our lane detector model are
visualized in Fig. 6 for the nine categories in the CULane
dataset. In addition, locally captured street view images that
encompass a range of road scenarios including urban, rural
and expressway conditions are inferenced in order to assess
the robustness of our trained model. Some of those results are
shown in Fig. 5.

A. Ablation Study

As an ablation study, each of the proposed methods is
evaluated in terms of the speed and the F1-measure, as given in
Table III. The first line contains the results of the base model,
and the FPS value is calculated based on the forward inference
time on the GPU. The high FPS value shows the efficiency of
our proposed light-weight network architecture with reduced
multiply-accumulate operations (MACs). The rest of the lines
show how the proposed post-processing techniques contribute
towards increasing the accuracy. However, employment of
each method reduces the FPS value, especially because these
algorithms run on the CPU.

VI. CONCLUSION

In this work, we proposed a simple, light-weight, end-to-
end deep learning based network architecture coupled with
the row-wise classification formulation for fast and efficient
lane detection. Furthermore, we introduced a false positive
suppression algorithm based on the length of the lane segment
and the Pearson correlation coefficient, and a second-order
polynomial fitting method as post-processing techniques. Col-
lectively, our approach surpasses state-of-the-art with regard
to speed reaching up to 411 FPS, while achieving competitive
results in terms of accuracy, as justified in the qualitative and
quantitative experiments carried out on the CULane bench-
mark dataset. We further demonstrated the capability of our
light-weight network architecture to perform in real-time, by
optimizing and quantizing our trained model using TensorRT
and deploying on an embedded system while integrating with
ROS, which achieves a high inference speed of 56 FPS. The
inference results for the locally captured street view images
show how well our method generalizes for the task of lane
detection.
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