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Abstract-Grouping the detected feature points traditionally 
requires the storage of long corner tracks. The traditional method 
does not permit to arrive at a decision to cluster the feature 
points based on a frame by frame basis. This paper presents a 
method to group the feature points directly into objects using the 
most recent 20 frames. The detected corner features are validated 
and clustered based on two approaches. When objects move in 
isolation, an EM algorithm is used to cluster and every object is 
detected and tracked. When objects move under partial occlusion, 
the corner features are clustered based on an agglomerative 
hierarchical clustering approach. A probabilistic framework has 
also been applied to determine the object level membership of 
the candidate corner features. A novel foreground estimation 
algorithm with an accuracy of 98% based on color information, 
background subtraction result and detected corner features is 
also presented. 

I. INTRODUCTION 

Monitoring vehicular traffic using surveillance cameras still 
need manual intervention. There have been work undertaken 
to detect, localize, and classify vehicles and to analyze vehicle 
behaviour like estimation of average speed, trajectory, flow 
rate and density using the video footage obtained through 
cameras [1]-[4]. The purpose of developing such automatic 
traffic surveillance systems is to track vehicles, monitor the 
vehicle traffic and extract traffic parameters. This system will 
enable to reduce manual intervention in monitoring traffic 
and identify regular road users and traffic violators. Traffic 
surveillance systems rely on accurate object detection and 
tracking. 

A. Related Work 

Extracting and tracking individual corner features or interest 
points and grouping them based on their trajectories is a 
method used in object tracking [1]. Although the segmen
tation of occluded objects is easy to perform, tracking the 
same corner feature for a long period of time is challenging. 
Furthermore a set of long corner trajectories will have to be 
processed and kept, resulting in heavy use of memory. The 
corner features are tracked from point of entry to exit and 
grouped directly into objects after obtaining long trajectories 
of the corner tracks using the proximity and motion history 
[1]. Points that rigidly move forward are grouped allowing 
occlusion to be handled at the cost of computational memory. 
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This is a typical example of a single level clustering and feature 
grouping approach. 

Kim [2] considers a dynamic multi-level feature grouping 
approach to obtain refined trajectories in real time in contrast 
to Coifman et al. [1]. Emerging feature points are initially 
grouped into small clusters using a Normalized-cut algorithm 
[5] and further a variation of Expectation Maximization al
gorithm is applied to serve two purposes namely; i) continue 
clustering the same clusters previously detected by N-cut in the 
next set of frames and ii) group the clusters that are detected 
to achieve object level grouping. 

Background subtraction provides the base for most of the 
object tracking algorithms. Initially, it extracts a background 
hypothesis from a sequence of frames. The difference of the 
background hypothesis and the current frame separates the 
foreground. Although the computational time it requires is 
relatively small, it is unable to deal with occlusions, shadows, 
and sudden illumination changes. Kim [2] has combined the 
background subtraction and the feature tracking and grouping 
algorithms to produce high quality object trajectories from 
fragmented feature tracks. Kim's augmentation to the back
ground subtraction algorithm uses a low-level feature tracking 
as a cue to validate the estimated foreground region; however, 
Kim has estimated the silhouettes based on conventional mor
phological operations. The main drawback of this estimation 
is considering the excess regions outside the boundaries of 
the objects as the foreground. This results in classifying such 
actual background pixels as a part of the foreground. 

Tracking applications can be conducted using a fixed feature 
space. However, Collins et al. [3] have proposed a method 
for evaluating on-line, adaptive selection of appropriate feature 
spaces for tracking and for adjusting the set of features used 
to improve tracking performance. They have claimed that the 
features that best discriminate the object and the background 
are best for tracking the object. Although a wide range of 
features can be used for tracking like color, texture, shape, 
and motion, they have only considered a linear combinations 
of camera R, G, B pixel values to compose the set of seed 
candidate features. 

Selecting the right features plays an important role not only 
in tracking but also in detection. In general, the most desirable 
property of a visual feature is its uniqueness in order for the 
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8) Validating the clustered feature points based on their 
membership. 

9) Tracking clusters and obtaining the trajectories of the 
corresponding objects. 

objects to be easily distinguished from feature space [6]. Buch 
et al. [4] present another method, 3DHOG, for detection and 
classification of road users in urban scenes. This system works 
even if the appearance of vehicles varies substantially with the 
viewing angle. This is an extension to HOG feature extraction 
[7] by applying 3D spatial modeling to operate on still images. 
This overcomes the reliability limitations of motion silhouettes. 
This is an example of using a complete different feature space 
to detect the objects. 

A. The Background Model 

In this paper we directly group detected corner features 
into objects without waiting till long corner trajectories are 
available to cluster. Our method takes into consideration both 
ideas of Kim [2] and Malik et al. [I]. Our focus is to use a 
single clustering algorithm to achieve object level clustering 
that could be applied on a frame by frame basis using Kim's 
work as a base. We also propose a method to incorporate color 
information to threshold the background subtraction result to 
accurately estimate the foreground pixels. Although we use 
conventional morphological operations to preserve the shape of 
the objects, we apply dilation with a small structuring element 
on our background subtraction result. This reduces estimating 
a larger excess region around the boundary of the actual object 
as a part of the foreground. In our work, we propose methods 

• to incorporate color information together with conven
tional morphological operations on background subtrac
tion result, to preserve the shapes of silhouettes that 
correspond to different sized objects and arrive at a better 
foreground estimate, 

• to achieve single-level clustering that directly correspond 
to objects without using long corner tracks, 

• to validate cluster membership of corner features based 
on a probabilistic framework using Bayesian reasoning. 

II. METHODOLOGY 

The blobs that are detected using background subtraction 
are validated through the KLT point tracks. These tracks 
are intern assigned to clusters using several mechanisms. We 
have applied an EM algorithm to group the detected corner 
tracks for instances where vehicles move in isolation and an 
agglomerative hierarchical clustering algorithm for instances 
where vehicles move under partial occlusion. The outline of 
the proposed methodology is as follows: 

1) Modeling the background and updating it every 15 
frames. 

2) Estimating the foreground region: Generating object 
blobs using color information and conventional morpho
logical operations. 

3) Detecting corner features using the KLT tracker [8]. 
4) Validating corner features and validating the estimated 

foreground region. 
5) Applying a single level hierarchical clustering algorithm 

when vehicles move under partial occlusion. 
6) Applying single level clustering based on an EM algo

rithm for vehicles moving in isolation. 
7) Applying Bayesian reasoning to determine the member

ship of a corner feature for each cluster. 
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Our approach is mainly based on Kim's work [2]. We have 
implemented the suggested background model with a modifica
tion to the background subtraction algorithm when estimating 
the actual foreground region. We update the background every 
15 frames and the frame rate of the videos considered is 30 
fps. The background model used is as follows [2]: 

Bt+1 = Ic( Bt) 
Bt+l = Ic((l - a) Bt + aNt) 

when lvlt = 1 

when lvlt = 0 

(I) 

(2) 

where Bt represents the background model at time t, Bt+1 is 
the next background update, Nt is the temporal median of the 
recent 15 frames, lvlt is the binary moving object hypothesis 
mask, a is a value in [0, I] and Ic(.) is an illumination
correction function which is applied to each of the R, C, B 
values as follows: 

(3) 

where kR, kG and kB are determined by voting on ReIR, 
CeIC, and Bcf B over all the pixels in the images and 
(Re, Ce, Be) are the pixel values of the current frame. 

lvlt is a state that each pixel could occupy. lvIt = 1 indicates 
that the considered pixel is estimated to be a foreground 
pixel and if lvlt = 0 the considered pixel is estimated to be 
a non foreground pixel. lvlt is generated from the resultant 
difference image obtained from subtracting the background 
from the current frame. How we compute lvlt based on color 
information and morphological operations will be introduced 
in the next subsection. The computation of kR, kG and kB for 
each R, C, B values of a frame used to update the background 
in our implementation is as follows: 

Average of the mid 50% of the current frame 

Average of the mid 50% of the previous background 

J) Silhouette generation based on color to preserve shape 

of the foreground: Converting the conventional background 
subtraction result to its binary format by using a threshold 
would result in a loss of regions that correspond to the actual 
foreground. Even if the fragmented pieces that appear could 
be dilated to determine the boundary and be filled in to obtain 
the object blobs/silhouettes, it is difficult to define a single 
structuring element that is capable of dilating and preserving 
the shapes of different sizes of objects. Therefore we use color 
together with the conventional morphological operations to 
preserve the shapes of silhouettes that correspond to different 
sizes of objects. The proposed mechanism used to determine 
the value of NIt and to improve generating silhouettes is 

(4) 



where x represents R, G, B colour values of each pixel, Ix 
is the current frame, Bt is the recent background update and 
PCx is the percentage colour change compared to the recent 
background update. 

For each pixel when we obtain the percentage color change 
compared to the recent background update, we select the 
maximum of the three percentages and apply a threshold to de
termine whether the pixel belongs to the estimated foreground 
or non foreground region. Then we dilate the resultant binary 
image using small structuring elements. Next we fill holes, 
remove small regions, and apply connected component analysis 
to label the regions and obtain the blobs. In this manner we 
validate each blob by detecting corner features [8], [9]. If we 
do not detect corner features in a blob, it is considered as a 
false foreground region and NIt is set to 0 for all the pixels 
within the region otherwise NIt is set to 1 for all the pixels 
within the validated blobs considered as the final estimated 
foreground region. 

B. Single Level Clustering 

Grouping feature points into objects either could be direct 
[1] or it could be arriving at an intermediate stage of grouping 
before clustering into objects [2]. Our approach attempts to 
group the feature points directly into object level clusters 
immediately after being detected without monitoring how 
closely a group of points appear and rigidly move forward. 

Our method mainly consists of two algorithms that could 
be applied based on the scenario. If all the objects move in 
isolation, object level clustering could be directly achieved by 
applying a two dimensional EM Algorithm [10] on the (X, Y) 
position coordinates of the feature points. EM requires not only 
the number of initialization points, but also their corresponding 
values close to the expected positions where clusters need 
to appear so that the desired clustering could be achieved. 
Thus we have used blob centers as the initialization points 
since each object corresponds to a single blob when objects 
move in isolation. When vehicles are partially occluded, blobs 
corresponding to actual objects are merged and therefore this 
approach fails in this scenario particularly because of not 
having the correct number of initialization points and their 
initial values. 

In order to achieve object level clustering under partial oc
clusion, the second algorithm we have used is an agglomerative 
hierarchical clustering approach. Each feature point is consid
ered as a different cluster and pairs of clusters are merged 
when moving up the hierarchy [11]. We have considered the x 
and y position coordinates, speed and the trajectory of each of 
the feature points when generating the feature matrix. Every 
instance of the feature matrix has been used to generate the 
matrix that encodes a tree of hierarchical clusters. 

In both clustering algorithms, for a given frame once the 
feature points are detected, the decision to cluster will be 
made after the feature points have been tracked for next 20 

frames. For each frame, feature points will be re-detected. 
Within the next 20 frames the speed of a feature point is 
computed using each of the two recent consecutive frames. 
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Thus the speed of a feature point at a given instance is 
considered as the median speed of these set of speeds. But 
each point's trajectory is obtained considering only its next 
appearance. In hierarchical clustering, the absolute gradient is 
used as the feature "trajectory" assuming each feature point's 
path follows a straight-line. 

J) Corner Feature Detection and Validation: In our work, 
we have used corner features as our feature points. The corner 
features are detected and tracked using the KLT tracker [8], 

[9]. Our work is based on Birchfield's KLT implementation 
[8] and the detected corner features are validated using the 
criteria mentioned in [2]. If a detected corner feature could 
be tracked thrice and if it does not have a match in the 
corresponding background image, such a point is termed as a 
valid feature point. Such validated corner points are then used 
to validate object blobs that results in the removal of false 
foreground regions facilitating a more accurate estimation of 

Mt. 

2) Membership of corner features: Once the detected 
corner features are clustered, the cluster membership of each 
feature point is determined based on a probabilistic framework. 
As in [2], for each clustered feature point, given the parame
ters, a Bayesian reasoning is applied to compute the posterior 
probability of the feature point to find out whether it belongs 
to the cluster or not. The extracted parameters are 

• the ratio of being in the same blob: r 
• the proximity: p 

• the history of motion: m 

as in Kim's work [2]. The computation of the posterior prob
ability of the cluster membership of a feature point depends 
on the generated prior distributions. For each feature point, 
the prior probability of being a member or not is 0.5 and 
thus it indicates the two possible states. Therefore for each 
parameter, we estimate two individual probability distributions. 
One distribution to represent a feature point being a member 
and the other to represent a feature point not being a member. 

We used a semi-supervised procedure to extract these param
eters to generate the probability distributions. The parameter 
r-ratio of being in the same blob- indicates that within the 
next 20 frames and out of 20, the number of times a particular 
feature point appearing on the actual object. For each feature 
point, r is actually the ratio of being in the actual object. 
When generating r-member distribution- all such values 
of the feature points for a set of frames are considered. In 
order to obtain rv r-not a member distribution- as in before, 
each feature point is tracked for 20 times and out of 20, the 
number of times a feature point appearing outside the object 
is considered. The Fig. 1 shows the histograms obtained after 
normalizing r to be in [0,1] with 20 bins. 

The parameter p---the proximity- refers to the minimum 
distance from the ellipse boundary to each clustered feature 
point. In order to extract this parameter, ellipses are drawn 
around the candidate clusters and the minimum distance from 
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Fig. 1: left-probability distribution obtained for r-ratio of 
being in the same blob- for a feature point appearing on 
the actual object, right-probability distribution obtained for rv r-ratio of not being in the same blob- for a feature point 
appearing outside the actual object. 

the ellipse boundary for each of these points is obtained. 
The distance of a point that lies inside the ellipse is used to 
generate the p---member distribution- and the distance of a 
point that lies outside the ellipse is used to generate the rv p--

not a member distribution-. Fig. 2 shows the the histograms 
obtained after normalizing p to be in [0,1] with 20 bins. 
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Fig. 2: left-probability distribution obtained for p---the 
proximity- for distance of a feature point that lies inside 
the ellipse boundary, right-probability distribution obtained for rv p---non proximity- for distance of a feature point that lies 
outside the ellipse boundary. 

The parameter m-the history of motion- refers to the 
speed of a feature point. We compute the m-member distri
bution by tracking each feature point within next 20 frames 
and obtaining the number of speeds of the feature point that 
lie close to the median value out of 20. In order to generate rv m-not a member distribution-, number of speeds of each 
feature point that do not lie close to the median out of 20 

have been used. Fig. 3 shows the the histograms obtained after 
normalizing m to be in [0,1] with 20 bins. 

For each appearance of the feature point, the speed is 
computed using two recent consecutive frames. How similar 
a particular speed compared to its median is computed as 
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Fig. 3: left-probability distribution obtained for m-the history 
of motion- for speeds of the feature point that lie close to the 
median value, right-probability distribution for rv m for speeds 
of the feature point that lie away from the median value. 

follows: 

M = abs(Sj - 5) 
Smax - Smin 

where (5) 

!vI is the measure that determines how similar the detected 
speed to the median speed, j is the number of times the speed 
could be computed within the next 20 frames, 5 is the median 
speed, Smax and Smin refer to the maximum and minimum 
speeds respectively. 

Therefore the posterior probability of the cluster mem
bership of a candidate feature point is computed separately 
considering the extracted parameters individually as follows: 

b )  P(xlmember) P(mem erlx = 
P(xlmember) + P(xl rv member) (6) 

where x = r, p, m. As in Kim's work [2] we have also as
sumed conditional independence of these extracted parameters. 
Therefore the above 3-equations can be expressed as follows: 

P(memberlr,p, m) = 
P(r,p, mlmember) 

P(r,p, mlmember) + P(r,p, ml rv member) 
where 

(7) 

P(r,p, mlstate) = P(rlstate) x P(pistate) x P(mlstate) 
where state = member / rv member (8) 

C. Cluster tracking 

In order to track the same cluster continuously, we use both 
the Euclidean distance between the previous and the current 
positions of the cluster centers and the trajectory. In every 
frame once the feature points are tracked in next frame, it 
is assumed that the feature points to follow an equation of 
a straight line and the gradients of all the feature points are 
obtained. The likely gradient of the straight line the cluster 
center may follow is estimated to be the median of the obtained 
set of gradients. For each frame, feature points are detected 



and tracked in the next 20 frames to extract the necessary 
parameters to validate before clustering in the current frame. 
Thus the median speed of all the candidate feature points of a 
cluster is already computed. Therefore the the expected center 
of the cluster in the next frame can be estimated using the 
frame rate, current speed and the gradient of the cluster center. 
Then by thresholding, the same cluster is identified. 

When computing the speeds of the feature points of an 
object, we can observe a range of different speeds within it. 
For instance, the speeds of the feature points appearing on the 
front end of the vehicle may be dissimilar to the speeds of the 
feature points appearing on the back-end of the same vehicle. 
This is mainly due to the perspective effect of the camera. 
Therefore to achieve robustness, the speed of the cluster center 
is considered to be the median of the speeds of the candidate 
feature points. 

III. RESULTS AND ANALYSIS 

We track vehicles under two different scenarios, namely, 
when i) vehicles move in isolation, ii) vehicles move under 
partial occlusion. Using EM algorithm and an agglomerative 
hierarchical clustering algorithm the vehicle tracking results 
were obtained. The video footage used for the experiment were 
Kim's video clip [2], specific regions of interest of VIRAT 
video clips [12] and freshly obtained local footage. We have 
further improved Kim's foreground estimation technique by 
incorporating color information together with the conventional 
morphological operations. We have also introduced a single 
level agglomerative hierarchical clustering approach to directly 
cluster corner features using the most recent 20 frames. 

The resultant object blobs obtained after incorporating color 
information together with the conventional morphological op
erations and after validating the foreground with the corner 
feature points are shown in the Fig. 4. 
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Fig. 4: Binary images represent the estimated foreground 
obtained by the improved foreground estimation technique 
indicating an accurate foreground estimation compared to the 
existing work. 

In order to quantitatively determine the accuracy of the 
algorithm, the state of each pixel of a given frame is considered 
as a two-class prediction problem in which the outcomes are 
labeled as positive (P) for a pixel in the actual foreground 
and negative (N) for a pixel in the actual background. We 
have applied the foreground estimation algorithm on a set of 
completely different images. The population is considered as 
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the total number of pixels of the set of images selected. The 
obtained confusion matrix is given below. 

TABLE I: The confusion matrix obtained by considering the 
state of the pixel being foreground or background-the total 
number of pixels of the set of images considered is 2683029. 

Actual Class 
Foreground (P) I Background (N) 

I Predicted Foreground 239057 -(TP) I 43431-(FP) 
I Predicted Background 6665-(FN) I 2393876-(TN) 

The foreground estimation algorithm estimates the fore
ground with a accuracy of 98% according to the confusion 
matrix. This indicates that when the video camera is fixed, 
given a frame, the developed color based foreground estimation 
technique is cable of estimating the actual foreground region 
with a accuracy of 98%. Our method assumes the position of 
the camera to be fixed in order to estimate the foreground 
region. Therefore when there is a slight movement of the 
camera, certain false foreground regions are generated. 

ROC curve 
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Fig. 5: When percentage color change compared to the previ
ous background is thresholded to 30% the classification ability 
of the foreground estimation technique increases. Thus a better 
foreground estimation could be arrived at by applying simple 
threshold on the background subtraction result. 

In foreground estimation, when the threshold applied on the 
obtained maximum percentage color change compared to the 
recent background update is varied, the classification ability 
of the foreground estimation algorithm could be evaluated 
using a ROC curve (Fig. 5). According to the ROC curve, 
closer a point to the top left corner, higher the correctness 
of the classification results generated by its threshold value. 
Therefore we have used 30% as the threshold value to decide 
whether the pixel belongs to the foreground or background 
region. 

The results obtained by applying EM algorithm to cluster 
the validated cluster points when vehicles move in isolation 
is shown in Fig. 6. In order to achieve the clustering of 
feature points to separately identify an object, it is important 
to initialize the EM algorithm with a point close to the desired 



cluster. Therefore when vehicles move in isolation, we use blob 
centers to initialize the EM algorithm. In Fig. 6, the validated 
corner features and the obtained trajectories are shown. 

Fig. 6: Trajectories obtained by the EM algorithm for a 
specific region of interest selected in a VIRAT video clip when 
vehicles move in isolation. Integer part of the displayed number 
represents the frame at which the vehicle is detected and the 
non integer part of the number indicates the assigned cluster 
number when it is detected. The obtained tracking result is 
good and is best viewed in color. 

Although agglomerative hierarchical clustering considers 
each feature point to be a different cluster and pairs of clusters 
are merged along the hierarchy, it still requires a certain cut
off value to determine for what extent the clusters must be 
merged. In this implementation the number of blobs are used 
as the number of objects in a frame. If the size of the blob is 
large, it is eroded and the blob count is used to identify the 
number of objects per frame. In order to validate the number of 
blobs, another criteria has been applied as follows: When fresh 
clusters are formed, based on the trajectory and the speed of 
the cluster center, the likely position of the same cluster center 
appearing in the next frame can be computed. Therefore when 
new feature points are detected on the current frame, a search 
is performed to find out whether the detected and validated 
feature points could be assigned to the same cluster. Thus it 
allows previously detected clusters/number of objects to be 
carried forward to the next frame until the object disappears 
from the field of view of the camera. The results obtained 
through agglomerative hierarchical are shown below. 

Fig. 7: Trajectories obtained after applying hierarchical cluster
ing to a specific region of interest in Kim's video. The obtained 
tracking result is satisfactory and is best viewed in color. 

In Fig. 7, the two vehicles initially appeared being partially 
occluded. But generating the feature matrix using the x and y 

position coordinates, speed and the trajectory has allowed the 
agglomerative hierarchical clustering approach to group the 
feature points directly in to objects as required. 

In the computation of probabilities in Fig. 1 for each ratio -T 

and rv T, the count is an integer ranging from [1-20]. But each 
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validated feature point is tracked thrice and therefore when the 
ratios are obtained and normalized to [0-1] range and 20 bins 
are used, no values are observed in certain normalized T values 
corresponding to initial counts. In Fig. 2 the probabilities for 
each parameter -p and rv p are computed as follows: The values 
of minimum distance from the ellipse boundary are continuous 
and therefore once the minimum distance is obtained, it is 
normalized to a value that lies between [0-1]. The probability 
is assigned by checking to which binned range the normalized 
value belongs to and retrieving its corresponding probability 
value. 

We have applied our tracking algorithms for several video 
clips and several selected regions of interest of VIRAT video 
clips [12]. All the vehicles that move in isolation are detected 
and tracked. But at certain times when vehicles move under 
partial occlusion, the hierarchical clustering algorithm failed 
simply because of not correctly estimating the number of 
objects per frame to cluster. In such circumstances, when the 
number of objects to cluster are manually adjusted, most of 
the time, the desired clustering is achieved. 

IV. CONCLUSION AND FUTURE WORK 

We have directly made an attempt to achieve object level 
clustering resulting in object tracking. For a given frame, 
cluster membership of the feature points are computed based 
on a probabilistic framework. We have tracked each feature 
point for next 20 frames to extract parameters. Then, we 
have assigned the probability of being a member by using 
the generated probability distributions. The implemented back
ground model requires the background subtraction result and 
the detected and validated corner feature result to function. 
The color information of a pixel and the conventional mor
phological operations have been used to preserve the shape of 
the estimated silhouettes. According to the obtained confusion 
matrix the accuracy of our foreground estimation algorithm is 
98%. 

The validated corner features are clustered based on two 
approaches. When objects move in isolation, an EM algorithm 
is used to cluster and all the vehicles are tracked. When objects 
move under partial occlusion, the corner features are clustered 
based on an agglomerative hierarchical clustering approach and 
the tracking result is satisfactory. Since a more reliable estimate 
of the number of objects increases the ability to cluster, further 
work will be done in this respect in the future. If the number of 
objects and the center position estimate of the grouped feature 
points are estimated for each object, the application of EM 
algorithm could be sufficient to achieve the desired clustering 
required. As the EM clustering and the agglomerative hierar
chical clustering algorithms are implemented off-line, we will 
continue our work to group the feature points using both of 
these grouping approaches under real time conditions in the 
future. 
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