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Abstract

Light field saliency detection—important due to utility in many vision tasks—still lacks speed and can

improve in accuracy. Due to the formulation of the saliency detection problem in light fields as a segmentation

task or a memorizing task, existing approaches consume unnecessarily large amounts of computational

resources for training, and have longer execution times for testing. We solve this by aggressively reducing

the large light field images to a much smaller three-channel feature map appropriate for saliency detection

using an RGB image saliency detector with attention mechanisms. We achieve this by introducing a novel

convolutional neural network based features extraction and encoding module. Our saliency detector takes

0.4 s to process a light field of size 9 × 9 × 512 × 375 in a CPU and is significantly faster than state-of-

the-art light field saliency detectors, with better or comparable accuracy. Furthermore, model size of our

architecture is significantly lower compared to state-of-the-art light field saliency detectors. Our work shows

that extracting features from light fields through aggressive size reduction and the attention mechanism

results in a faster and accurate light field saliency detector leading to near real-time light field processing.

Keywords: Light fields, saliency detection, feature extractor, fast algorithms, convolutional neural

networks.

1. Introduction

Light fields capture both spatial and angular information of light emanating from a scene compared to

spatial-only information captured by images. The additional angular information available with light fields

paves the way for novel applications such as post-capture refocusing [1, 2, 3] and depth-based filtering [4, 5, 6],

which are not possible with images. Furthermore, light fields support numerous computer vision tasks which

are traditionally based on images and videos [7, 8, 9, 10, 11, 12, 13, 14, 15].

Saliency detection is a prerequisite for many computer vision tasks such as semantic segmentation, image

retrieval, and scene classification. Saliency detection using light fields provides better accuracy compared

to what is provided by RGB images, in particular, for challenging scenes having similar foreground and

background, and complex occlusions [16, 17]. However, data available with light fields (i.e., pixels per light

field) are significantly higher than data available with a single RGB image, e.g., a light field having 9 × 9
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sub-aperture images contains 81 times more data (with the same resolution). Therefore, computational time

of light field saliency detection algorithms is substantially higher compared to that of RGB image saliency

detection algorithms [17].

We can categorize existing light field saliency detectors in to three classes depending on the input: focal

stack and all-focus image, RGB-D images, and light fields. In the first class, a set of two-dimensional (2-D)

images focused at different depths, called a focal stack, and a sub-aperture image, called all-focus image, are

used as the input. Here, a focal stack is generated from a light field using a refocusing algorithm [1, 2], and

this step acts as a preprocessing step with additional computations. Furthermore, focal stack generation

requires human intervention because the number of 2-D images in a focal stack depends on a light field. The

second class employs RGB-D images consisting of an all-focus image and a depth map. In this case, the

depth map is generated using a depth estimation algorithm [18, 19, 20] and incur additional computations.

Similar to the generation of a focal stack, generation of a depth map is also a preprocessing step. Compared

to these two classes, the third class employs a light field as the input without any preprocessing steps. Recent

algorithms of these three categories predominately use convolutional neural networks (CNNs) to learn the

relationship between the image features and saliency of light fields. Even though the available light field

datasets are limited in size, we can freely augment focal stack and RGB-D data in the first two classes. On

the other hand, inability to freely augment light field images prevents training deep CNNs from scratch in

the third class. These constraints demand the use of pre-trained networks, of course, followed by fine tuning.

In this paper, we propose a novel feature extraction and encoding (FEE) module for fast light field

saliency detection by employing a 2-D RGB image saliency detection algorithm. Our FEE module takes

light field as the input (so, belongs to the third class), and provides an RGB encoded feature map. The

proposed FEE module comprises of a CNN with five convolutional layers. Here, we employ sub-aperture

images as our input in contrast to most of the previously proposed light field saliency detectors, where focal

stack is the input. This prevents the use of computationally-high recurrent neural network layers such as

long short-term memory (LSTM) and ConvLSTM [21] and enables to employ computationally- and memory-

efficient convolutional layers. We employ the 2-D saliency detector proposed in [22] with our FEE module.

Furthermore, we employ the LYTRO ILLUM saliency detection dataset [23] and DUTLF-v2 dataset [24] for

the training and testing the performance of our light field saliency detector. Here we augment both light field

data sets without affecting angular features. Experimental results obtained with five-fold cross validation

confirms that our saliency detector provides a significant improvement in computational time with accuracy

comparable or better than state-of-the-art light field saliency detectors [23, 25]. Furthermore, model size of

our architecture is significantly lower compared to state-of-the-art light field saliency detectors leading to

a lower memory requirement. Such low complexity saliency detectors are required for applications such as

field robotics [9, 12, 15], where real-time operation on embedded systems are mostly required. In summary,

our contributions are:
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• introducing a novel and computationally and memory-wise efficient method to detect salient objects

in light fields using the FEE module in combination with an RGB salient object detector.

• introducing a combination of techniques, such as random rotation by 90o, random changes of bright-

ness, saturation and contrast, and shuffling channels randomly, to augment light fields in lens array

format without affecting angular features.

The paper is organized as follows. In Section 2, we review different approaches employed and algorithms

proposed for saliency detection of RGB images and light fields. We present our light field saliency detector

in detail in Section 3. In Section 4, we present experimental results to verify the accuracy and the speed of

the proposed light field saliency detector. Finally, in Section 5, we present conclusion and future works.

2. Related Works

2.1. Saliency Detection on RGB images

Saliency detection is one of the oldest problems in computer vision research and there have been many

research done on various approaches for this task in the recent time. Earliest research [26, 27, 28, 29]

were mainly based on handcrafted features like boundaries or contrast of the images to detect the most

salient objects in the RGB images. [26] proposed a graph based manifold ranking algorithm for salience

detection based on background and foreground cues. [27] proposed an regional contrast based algorithm,

where global contrast and spatial weighted coherence scores are used simultaneously to accurately detect

the salient objects. [28] introduced a contrast based approach using high dimensional Gaussian filters to

unifying detect salience and complete contrast while [29] used background priors to detect the salient regions

on images. Even though these methods are less computationally expensive, they tends to fail in complex

backgrounds. Recently, [30] introduced an adaptive, weighted k-means-based superpixel segmentation with

self-adjustable distance measures for accurate superpixel segmentation for salient object detection in RGB

images.

With the popularity of deep learning in the last decade, many approaches based on deep learning has

been introduced for the RGB saliency detection using neural networks. There is rich body of work in

saliency detection in RGB images: pyramidal, feature based, recurrent network based, and attention based.

Most non-recurrent methods use VGG-16- or VGG-19-like feature extractors [31] pre-trained on ImageNet

dataset for feature extraction. Pyramidal saliency detectors [32, 33, 22] have the advantage of the ability

to use information from multiple layers. Some that build up on CNN feature computers defer the actual

saliency detection to latter layers or combine features from many layers [34, 35]. [36] introduced a gate-

based contextual feature extraction module for salient object detection in RGB images where learnable

gates act as a filter to extract relevant contextual information. Methods that employ recurrent networks
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generally work well [37, 38] with the possible disadvantage of slowness. RGB saliency detectors greatly

benefit from attention models, by focusing on features that truly capture saliency without the interference

of unnecessary features. [39] introduced multi-scale feature extraction based CNN combining an adjacent

layer attention block and a partial encoder–decoder block. This approach mitigates the issues in existing

CNN-based approaches like embedding of abstract information and loss of spatial information due to late

fusion of detailed features. Although these methods show success in RGB images, they are unsuitable

for direct use with light field images because their architecture and input are not specifically designed to

extract the geometry information of light fields embedded in angular dimensions. This information is vital

to improve the quality of predicted saliency maps. For a comprehensive review of saliency detection on RGB

images, the reader is referred to [40, 41, 42].

2.2. Saliency Detection on Light Fields

Light field saliency detection [16] improves the accuracy of saliency detection in challenging scenes having

similar foreground/background and complex occlusions. This improvement achieves in [16] by exploiting

the refocusing capability available with light fields which provides focusness, depths, and objectness cues.

[17] employs depth map, all focus image and focal stack available with a light field for saliency detection.

[43] further exploits light field flow fields over focal slices, and multi-view sub-aperture images improve

the accuracy in saliency detection by enhancing depth contrast. [44] employs a dictionary learning based

method to combine various light field features for a universal saliency detection framework using sparse

coding. This method handles various types of input data by building saliency and non-saliency dictionaries

using focusness cues of focal stack as features for light fields. All these methods works on super-pixel level

features of light fields, and do not exploit high-level semantic information properly in order to have robust

performance in complex scenarios.

2.3. Light Field Saliency Detection with Deep Learning

Recent advances in light field saliency detection successfully use deep neural networks. [21] introduced a

two-stream neural network architecture with two VGG-19 feature extractors and ConvLSTM-based attention

module to process the all-focus image and focal stack to generate saliency maps. The saliency detection

model in [45] use a deep neural network pipeline containing light field synthesising network using center view

and a light field driven saliency detection network to detect salient objects in single view images. Similarly,

[25] employed a multi-task collaborative network (MTCN) for light field saliency detection with two streams

for central view image and multi-view images by exploring the spatial, depth and edge information in

different parts of their neural network with the help of a complicated loss function with different components

for different parts of the network. [23] introduced a “model angular changes block” to process light field

images with a modified version of Deeplabs v-2 segmentation network (LFNet), which is a computationally
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heavy backbone, considering the similarity between the segmentation and saliency detection. On the other

hand, the suitability of a semantic segmentation network, not specifically trained on light fields, may affect

accuracy. [24] introduced, two-stream network containing teacher and student network to detect salient

objects, exploiting focal stack and all focus image in their respective streams of the network. Most of these

methods have the inherent disadvantage of slowness due to use of heavy segmentation networks, several

feature extractors, recurrent blocks and several streams. Furthermore, full light field data are employed for

most of the parts and layers of the neural networks hindering the speed.

3. Proposed Light-Field Saliency Detection Architecture

Speeding-up light-field saliency detection requires avoiding computationally heavy one or more backbones

and predominantly working in bulky light-field features maps. On the other hand, inability to freely augment

light field images prevent training deep light field saliency detectors from scratch. These constraints demand

using a pre-trained network (of course, followed by fine tuning). There are well-known pre-trained networks

that detect saliency in 2-D RGB images [22, 46, 47]. In this paper we propose a FEE module that can be

integrated into 2-D saliency detectors without any architectural changes to the base model, to extract and

encode the features in light fields. Figure 1 shows an overview of the architecture of our system. The input

to this neural network is a light field of size S×T ×U ×V in the form of a micro-lens image array of of size

W ×H, where W = S × U and H = T × V . Here, (S, T ) denotes the spatial resolution and (U, V ) denotes

the angular resolution of a light field. Figure 2 shows a light field with sub-aperture images and micro lens

array image. Then the extracted feature maps can be fed into the 2-D saliency detector to get the saliency

maps. This whole network can be trained end-to-end manner after the integration.

3.1. 2-D Saliency Detector

Task of saliency detection in regular images is similar to binary semantic segmentation, and for this

task requires both high level contextual information and low level spatial structural information. However,

all of the high-level and low-level features are not suitable for saliency detection, and some features might

even cause interference [22]. An attention mechanism can avoid such situations. The 2-D saliency detector

proposed in [22] is such a system which we select as the saliency detector. This work especially uses channel

wise attention module (CA) for high-level feature maps and spatial attention (SA) module for low-level

feature maps with edge preserving loss function to preserve the edges of a saliency map. Along with the

CA and SA modules, the pyramid feature network of the architecture leads to the state-of-the-art accuracy

for RGB image saliency detection. However, using a single sub-aperture image or the all-focus image of a

light field to feed the input of a 2-D saliency detector is ineffective as angular information of the light field

gets lost. We solve this problem by using a carefully designed novel light field FEE module integrated in to
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Figure 1: System architecture: light field FEE block receives the light fields and computes features. Spatial attention block

(SA) and channel-wise attention block (CA) receives low level (Conv 1-2 and Conv 2-2) and high level (Conv3-3, Conv 4-3 and

Conv 5-3) features, respectively. VGG-16, or a similar block, produces these feature maps. Note that light field processing

happens only in the light field FEE block. CA block gives attention to more informative kernel outputs. CPFE: context aware

pyramid feature extraction.

the input of the network. We do not describe the architecture of the 2-D saliency detector in detail, and we

refer the reader to [22] for more details.

3.2. Novel Feature Extraction and Encoding Module

The 2-D saliency detector accepts inputs with resolution of 256 × 256 × 3 and produces saliency maps

with resolution of 256×256×1. Starting from this, our FEE module must extract and encode the pixel-wise

angular information stored in a light field and produce an RGB image. In order to do that, by arranging

a light field as a 2-D image of size W × H, we run an U × V kernel with the stride of (U, V ) to exploit

the angular information related to each pixel as mentioned in [23]. Here, we consider the modified light

fields in the LYTRO ILLUM [23], where (U, V ) = (9, 9) and (S, T ) = (512, 375) leading to W = 4608 and

H = 3375, and DUTLF-v2 [24] ,where (U, V ) = (9, 9) and (S, T ) = (512, 400) leading to W = 4608 and

H = 3600. Because our light filed saliency detector shown in Figure 1 processes light fields only in the FEE

module and prevents subsequent processing in the 2-D saliency detector, we can achieve significant saving of

computational time.

The FEE module as depicted in Figure 3 is the key component that leads to significant speed improve-

ments. The FEE module aggressively downsamples a light field and encodes features suitable to be fed to

a regular CNN. The FEE module consists of five convolutional layers. The first convolutional layer consist

of 128 filters of size 9 × 9 and a (9, 9) stride. This layer precedes two convolutional layers having 64 and
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(S,T)=(512,400)(U,V)=(9,9)

(a) Sub-aperture image array and a single view (b) Lens array image

(c) pixels in sub-aperture image array (d) pixels in lens array image

Figure 2: A light field consists of U × V sub-aperture images, where each sub-aperture image has S × T pixels as shown in (a)

& (c). The pixels in sub-aperture image array can be restructured to get the lens-array image shown in (b), where extracted

patches depict the pixel arrangement of the lens-array image. (c) & (D) depict how the pixels in sub-aperture images in (c)

are rearranged in order to obtain a lens-array image shown in (d), where the first block of size U × V contains all the pixels

of spatial position (1, 1) in each sub-aperture image. As an example, when the lens-array image in (b) is considered, top left

9× 9 block of pixels contains all 81 pixels located at (1, 1) position of each 81 sub-aperture images. Using this arrangement, a

convolution block stride (U, V ) can be used to extract angular information from sub-aperture images.

32 filters of size 3 × 3 and a stride (1, 1), respectively. A similar layer having 32 filters of size 3 × 3 and a

stride (2, 2) is used to downsample the feature maps into (256, 256, 32) and the last convolution layer has 3

filters of size 1× 1 and a stride (1, 1) and compute the encoded output that is fed to the 2-D RGB saliency

detector.

As the input light field is a micro lens array image, adjacent pixels in the first 9× 9 block comprises the

first pixel of each of the 81 sub-aperture images, see Figure 2d. Therefore, by using a stride of (9, 9) in the

first convolutional layer, we capture the same pixel for all the sub-aperture images at each convolution step.

Following this, we select the layer-size parameters of hidden convolutional layers to be compatible with the

architecture of VGG-16 network with decreasing number of filters at each layer to encode the light field in

to a feature map of 256× 256× 3 resolution. We note that VGG-16 is just one choice of the back bone, and

other backbones, e.g., ResNets are also suitable.
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4680 × 3375 × 3

512 × 512 × 128

512 × 512 × 64

512 × 512 × 32

2 × 2
Max-
Pool

256 × 256 × 32

256 × 256 × 3

Figure 3: The light field FEE block receives micro lens array images of resolution 4608 × 4608 × 3 and encodes the light

field image into an RGB image of resolution 256 × 256 × 3 through five convolutional layers.The FEE module consists of five

convolutional layers. The first convolutional layer consist of 128 filters of size 9× 9 and a (9, 9) stride. This layer precedes two

convolutional layers having 64 and 32 filters of size 3 × 3 and a stride (1, 1), respectively. A similar layer having 32 filters of

size 3 × 3 and a stride (2, 2) is used to downsample the feature maps into (256, 256, 32) and the last convolution layer has 3

filters of size 1× 1 and a stride (1, 1).

4. Experimental Results

We present experimental results in this section. We employ the LYTRO ILLUM [23] and DUTLF-v2 [24]

datasets in the experiments with a computing platform comprising of an Intel Core i9-9900K (3.60 GHz)

CPU, 32 GB RAM and Nvidia RTX-2080Ti GPU. Note that even though two other light field saliency

datasets, HFUT-Lytro [43] and LFSD [48], are publicly available, they are not suitable for evaluation of

our light field saliency detector due to the low angular resolution and unavailability of sub-aperture images.

There are 640 light fields in the LYTRO ILLUM dataset, and we compare the performance the proposed

light field saliency detector with the state-of-the-art light field saliency detectors LFNet [23] and MTCN [25]

and state-of-the-art 2-D saliency detectors NLDF [49], PAGE-Net [50], GCPA Net [47], SCRNet [46] and

SODGAN [51] in terms of the accuracy achieved with five-fold cross validation and computational time.

The DUTLF-v2 [24] dataset contains 4208 light fields divided into test and train sets having 2961 and 1247

light fields, respectively. We compare the performance of the proposed method, fine-tuned in the train set,

with state-of-the-art 2-D saliency detectors, DLFS [45] and student networks proposed in [24] and light field

saliency detectors, LFNet [23], DisenFusion [52], ATAFNet [53], CPFP [54], MOLF [55] and teacher network

proposed in [24].

4.1. Implementation and Training of the Proposed Light Field Saliency Detector

To facilitate the proposed FEE module to encode a light field into 256×256×3 feature map, we crop the

initial micro lens array images of the LYTRO-ILLUM dataset[23] of size 4860 × 3375 × 3 into four images

of size 4608× 3375× 3, removing pixels at the borders. This leads to a dataset of 2560 light fields, and we

incorporate data augmentation, such as random rotations of 90◦ and 180◦, random brightness, saturation
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and contrast changing, and random shuffling of the colour channels without affecting the angular information

available with a light field. For the DUTLF-v2 [24], we use the same configuration except cropping micro

lens array images into an one 4608×3600×3 micro lens array image. We train our saliency detector in three

steps. First, we train 2-D saliency detector [22] on a combined dataset of DUTS-TR [56] and ECSSD [57]

datasets with DUTS-TE [56] as the test set because the trained model of 2-D RGB saliency detector [22]

is not available. We use the best performing model with a mean absolute error (MAE) of 0.0698 as the

base model even though this best model does not achieve the performance measures reported in [22], i.e.,

(MAE= 0.0405). Then, we train the FEE module with the overall architecture shown in Figure 1 using the

light field dataset with the 2-D saliency detector frozen for 10 epochs. Finally, we train both FEE module

and the 2-D saliency detector for another 40 epochs. For all the training, we employ the SGD optimizer [58]

with a momentum of 0.9, decay of 0, and initial learning rate of 10−2 with a batch size 8. We use the loss

function used in [22], i.e.,

L = −
B∑
i=1

(αsYi log(Pi)) + (1− αs)(1− Yi) log(1− Pi), (1)

where Pi is the predicted saliency map, Yi is the ground truth saliency map, B is the batch size, and

αs = 0.528 [22].

4.2. Comparison with State-of-the-Art Light Field Saliency Detectors

We employ the evaluation metrics Fβ measure (with β2 = 0.3 as suggested in [59], MAE, and Fw
β measure

to compare the performance of the saliency detectors. The metrics Fβ , F
w
β and MAE are, respectively,

defined as

Fβ =
(1 + β2)× Precision×Recall

(β2 × Precision) +Recall
, (2)

Fw
β =

(1 + β2)× Precisionw ×Recallw

β2 × Precisionw +Recallw
, (3)

MAE =
1

W ×H

W∑
i=1

H∑
j=1

|P (i, j)−G(i, j)|, (4)

where P (i, j) and G(i, j) are the output saliency map of a saliency detector and the ground truth saliency

map, respectively, and w is an Euclidean distance based weighting function [60]. We present the performance

achieved with the proposed, LFNet [23] and MTCN [25] light field saliency detectors and five other 2-D

saliency detectors in LYTRO ILLUM [23] dataset in Table 1. Accordingly, performance of our saliency

detector is superior compared to LFNet while is slightly behind compared to MTCN in terms of all the

three metrics. We show the saliency maps of twelve light fields obtained with the proposed, LFNet [23]

and MTCN [25] light field saliency detectors in Figure 5 for qualitative comparison. Our saliency maps are

closer to the ground truth compared to those of LFNet and comparable with the salience maps achieved with
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Table 1: Comparison with state-of-the-art light field saliency detectors, LFNet [23] , MTCN [25] and RGB saliency detectors,

NLDF [49], PAGE-Net[50], GCPANet [47] and SODGAN [51]. Our results surpass LFNet [23], DLFS[45], and are slightly

behind MTCN [25] in LYTRO-ILLUM[23] dataset

2-D Light field

Metric NDLF[49] PAGE-Net [50] GCPA Net [47] SCRNet [46] SODGAN [51] DLFS [45] LFNet [23] MTCN [25] Ours

Fβ 0.7866 0.8047 0.8306 0.8473 0.8313 0.7391 0.8116 0.8729 0.8558

Fw
β 0.7299 0.7826 0.8100 0.8097 0.7969 0.6655 0.7540 0.8534 0.7671

MAE 0.0764 0.0723 0.0580 0.0551 0.0624 0.0843 0.0551 0.0483 0.0541

Table 2: Comparison with state-of-the-art lightfield saliency detectors in DUTLF-v2[24] dataset and our model has comparable

performance and lags slightly behind Teacher model[24] surpassing all the other algorithms in terms of Fβ measure.

2-D RGB-D Focal stack Light field

Metric DLFS [45] Student [24] DisenFusion[52] ATAFNet[53] CPFP[54] Teacher [24] MoLF [55] LFNet [23] Ours

Fβ 0.684 0.813 0.686 0.808 0.707 0.852 0.723 0.803 0.8491

Fw
β 0.641 0.771 0.636 0.775 0.629 0.792 0.709 0.786 0.7279

MAE 0.087 0.055 0.093 0.051 0.075 0.050 0.065 0.049 0.052

Size(M) 119 47 166 291.5 278 92.5 186.6 175.8 63

MTCN. Furthermore, our method greatly outperforms the accuracy obtained with the base model, i.e., the

2-D saliency detector in [22]. We also present the performance of the proposed light field saliency detector

achieved for the DUTLF-v2 [24] dataset in comparison to state-of-the-art 2-D saliency detectors, DLFS [45]

and student networks proposed in [24] and light field saliency detectors, LFNet [23], DisenFusion [52],

ATAFNet [53], CPFP [54], MOLF [55] and teacher network proposed in [24] in Table 2. Our method achieves

second place in Fβ measure and achieves comparable performance in other measures. More importantly,

our model is much smaller in size compared to other models except student [24] network. Accordingly,

our methods provides a significant reduction in memory requirement, especially compared to state-of-the-

art light field saliency detectors of all the three categories: focal stack, RGB-D and light field. Therefore,

our model is appropriate to be implemented in for resource constrained devices. Furthermore, we present

saliency maps of our model for four light fields in Figure 6. Note that outputs of our model are more closer to

the ground truth compared to those of the base model. In addition, we show the PR and F-measure curves

for the models GCPANet [47], SCRNet [46], SODGAN [51], and MTCN [25] obtained with the LYTRO-

ILLUM [23] and DUTLF-v2 [24] datasets in Figure 4. The PR curve of our method is better or on par with

the state-of-the-art light field and 2-D saliency detectors for both datasets.

We present the computational time required by each light field and RGB saliency detector to process

a light field in the LYTRO ILLUM dataset. We present the computational time required by each saliency

detector in Table 3 for both CPU and GPU implementations. Here, the computational time required

by each saliency detector implemented on Tesla P100 GPU are obtained from [25]. We mainly consider

saliency detectors LFNet [23] and MTCN [25], which employ the full light field, for a fair comparison with

the proposed saliency detection method. Our saliency detector is 25 times faster than the LFNet in the
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(a) PR curve for DUTLF-v2 [24] dataset. (b) PR curve for LYTRO-ILLUM [23] dataset.

(c) F-measure curve for DUTLF-v2 [24] dataset. (d) F-measure curve for LYTRO-ILLUM [23] dataset.

Figure 4: PR and F-measure curves of the proposed method for the DUTLF-v2 [24] and LYTRO-ILLUM [23] datasets.

CPU implementation, and require 55% and 40% less time compared to LFNet and MTCN, respectively, for

GPU implementation. Here, we present an approximated value for MTCN obtained based on the ratios of

computational times reported in [25] for an implementation using a Nvidia Tesla P100 GPU and inference

times for the same models in an Nvidia RTX 2080Ti GPU. In particular, we employ the closest available ratio

to the median of inference time ratios (2.25 [51], 2.51 [47], 3.16 [23], and 3.80 [46]) between two GPUs which

is 3.16. Accordingly, the proposed light field saliency detector significantly outperforms state-of-the-art light

field saliency detectors, and achieves near real-time processing even in the CPU implementation.

4.3. Ablation Study

In this section, we present the comparison between the base model [22] and our architecture with the

FEE module. In Table 4, we compare the performance increment obtained through the FEE block in

LYTRO ILLUM [23] and DUTLF [24] datasets. As we can see from the results, FEE model provides a

significant boost in performance compared to the base model [22] in both cases. It is worthwhile to note
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Table 3: Computational time required to process a light field: our saliency detector is significantly faster than the state-of-the-

art light field saliency detectors.

Method i9-9900K Tesla P100 RTX-2080Ti

PAGE-Net[50] - 0.0822 s -

NDLF[49] - 0.0818 s -

SODGAN[51] 0.3916 s 0.4078 s 0.1812 s

DLFS[45] - 0.4336 s -

GCPANet[47] 0.1957 s 0.0400 s 0.0159 s

SCRNET [46] 0.1071 s 0.0578 s 0.0152 s

LFNet [23] 10.4813 s 1.6820 s 0.5321 s

MTCN [25] - 1.2610 s 0.3989∗ s

Ours 0.4175 s 0.7526∗ s 0.2381 s

∗These values are approximated using the results in [25] and ours using a linear mapping.

Table 4: Comparison of Fβ scores between base-model and the neural network.As depicted in the table, addition of FEE

module gives a huge boost to the performance of the model for both datasets

Method LYTRO ILLUM DUTLF-V2

Base model 0.7322 0.7275

FEE + Base model 0.8558 0.8491

that the Fβ measure of our method could be further improved by employing the original base model with

MAE= 0.0405 [22] than our trained model with MAE= 0.0698. In Figure 7, we present the scaled outputs

from the FEE block for light fields of the LYTRO ILLUM dataset [23]. We can observe in the outputs

of the FEE module that the regions with the higher disparity, i.e., salient objects in the foreground, are

emphasized from the background by a border. This verifies that FEE module successfully encodes features

of a light field required for salient object detection. This feature embedding helps to accurately segment the

salient regions while avoiding computationally heavy backbones.

5. Conclusion and Future Work

We proposed a fast and accurate light field saliency detector that feeds carefully computed light field fea-

tures to a saliency detector with an attention mechanism. It is fast and runs on an i9 CPU at approximately

2 light fields/s and on a 2080Ti GPU at 4 light fields/s leading to near real-time processing. Furthermore,

the memory requirement of our model is significantly lower compared to state-of-the-art light field saliency

detectors making our model appropriate for resource constrained devices. The accuracy of our model sur-

passes most of the existing methods, and is only slightly inferior to a very recent work. The speed is due

12



to faster feature extraction that constrains light field processing only to the FEE module and using a single

stream without resorting to recurrent networks. The high accuracy is due to the light field saliency specific

feature extractor and the use of an attention mechanism. Our work brings light field saliency detection

closer to real-time implementations which would enable, e.g., cameras to refocus on objects of interest.

Future directions include making the network faster and more accurate by changing or improving the

2-D detector backbone and FEE module. Adapting this method to other computer vision tasks which

benefit from the angular information embedded in light fields and lack reasonably-sized datasets—such as,

material recognition, segmentation, and object detection—which use 2-D-input neural networks would also

be interesting.
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(a) Center SAI (b) GT (c) LFNet [23] (d) MTCN [25] (e) Base [22] (f) Ours

Figure 5: Comparison of saliency maps: (a) centre sub-aperture image (SAI) of the light field, (b) ground truth (GT), (c)

LFNet results [23], (d) our results. Our saliency maps are closer to the ground truth compared to those of LFNet[23] and base

model[22]
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(a) Center SAI (b) GT (c) Base [22] (d) Ours

Figure 6: Comparison of saliency maps: (a) centre sub-aperture image (SAI) of the light field, (b) ground truth (GT), (c) base

network, (d) our results in DUTLF-v2 dataset.As it can be seen in the results, our outputs are more closer to the ground truth

compared to the base model[22] outputs.
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(a) Center SAI (b) GT (c) FEE

Figure 7: This figure contains (a) center sub aperture image, (b) ground truth and (c) scaled outputs from the FEE module.

We observe that the regions with the higher disparity are emphasized from the background by borders. This verifies that the

FEE module successfully encodes the features required for for salient object detection.
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