
Deep Learning of Augmented Reality based Human Interactions for
Automating a Robot Team

Adhitha Dias
Department of Electronic and

Telecommunication Engineering
University of Moratuwa

Colombo, Sri Lanka
adhithadias27@gmail.com

Hasitha Wellaboda
Department of Electronic and

Telecommunication Engineering
University of Moratuwa

Colombo, Sri Lanka
hasithaprashan@gmail.com

Yasod Rasanka
Department of Electronic and

Telecommunication Engineering
University of Moratuwa

Colombo, Sri Lanka
yasodrasanka@gmail.com

Menusha Munasinghe
Department of Electronic and

Telecommunication Engineering
University of Moratuwa

Colombo, Sri Lanka
menushamilaj@gmail.com

Ranga Rodrigo
Department of Electronic and

Telecommunication Engineering
University of Moratuwa

Colombo, Sri Lanka
ranga@uom.lk

Peshala Jayasekara
Department of Electronic and

Telecommunication Engineering
University of Moratuwa

Colombo, Sri Lanka
peshala@uom.lk

Abstract— Getting a team of robots to achieve a relatively
complex task using manual manipulation through augmented
reality (AR) is interesting. However, the true potential of such
an approach manifests when the system can learn from humans.
We propose a system comprising a team of robots that performs
a previously unseen task—a variant, to be specific—by learning
from the sequences of actions taken by multiple human beings
doing this task in various ways using deep learning (DL).
The training inputs can be through actual manipulation of the
team of robots using an augmented-reality tablet or through
a simulator. Results indicate that the system is able to fulfill
the specified variant of the task more than 80% of the time,
inaccuracies mainly owing to unrealistic specifications of tasks.
This opens up an avenue of training a team of robots, instead
of crafting a rule base.

Keywords— deep learning, robot collaboration, augmented
reality, automate

I. INTRODUCTION

It is intriguing to see the ease with which humans do
relatively complex tasks comprising a sequence of steps. The
sequences of steps themselves are not identical if several
humans attempt the same complex task. Moreover, several
variants of sequences can lead to successful completion of
the task—a variant. E.g., in a building construction task, for
a particular building design, there can be many sequences
of steps of successfully building, while there are different
building designs. In other words, each task can have many
variants and each variant emanates via a number of sequences
of steps. Getting a set of robots in a rule-based algorithmic
system that seems to achieve the same level of competence is
difficult to craft due to the variations [1]. In contrast, learning
to do a relatively complex task by learning from multiple
humans completing several variants of the task many a times,
is an intriguing solution.

Calinon et al. [2] discusses about robot programming
by demonstration for learning and reproduction of gestures
using Hidden Markov Models and Gaussian Mixture Regres-
sion. Laskey et al. [3] compares human-centric and robot-
centric sampling for robot deep learning from demonstra-
tions. Michael et al. [4] performs multi-robot task assignment
without relying on a priori assignment information.

However, none of these systems highlights the significance
of using the output from DL to control task of a multi-
robot system and none of these works have used AR for
user interactions and demonstration purpose of the task.

In this work, we train a team of few robots learning from
the sequenced steps taken by multiple people to complete
a task that has many variations. Once trained via DL, the
robot system is able to complete a variant of the task. We
demonstrate this in a toy building construction, using blocks,
two mobile robots, and a fixed robot arm using DL. There is
a camera with a field of view covering the whole workspace.
This enables the location information of the blocks and the
robots to be available to the system. We do the training by
either getting the people to do variants of tasks using the
AR system implemented on a tablet computer or using a
simulator that mimics the actual system. This results in a
system that (deep) learns through AR or simulator based user
interaction to achieve the completion of a previously unseen,
relatively complex variant of a task. We are not concerned
about the optimal way of doing a task in this work, but we
just borrow the knowledge that has been mastered by humans
over a long period of time.

The contributions of our work includes
1) Capturing human interactions with the robot system,

particularly, using augmented reality or a simulator
with the objective of learning a relatively complex task

to be performed by a team of robots,
2) The use of a sequence of occupancy grids to encode

the sequence of actions base and
3) The deep learning method, particularly for a sequential

task.
To the best of our knowledge, this is the first t ime that

a robot system learns from multiple humans performing
variants of a task to complete a previously unseen variant
of a task.

The rest of the paper is organized as follows: section
II presents the literature review; section III and IV cover
the method, where section IV focuses on the deep learning
method; section V presents the results followed by the
conclusion in section VI.

II. RELATED WORK

In this section, related work is detailed according to
the four (4) main sub-systems (detailed in section III) of
the proposed system. Nevertheless, none of the work have
amalgamated all of them together to transfer human-like
behavior to a robotic team.

A. Learning Frameworks

The problem that we are going to solve can be identified
as a sequential decision-making problem, where the system
needs to predict the actions needed to get to the final goal
while trying to “act as human” as possible.

Learning policies for decision-making problems through
neural networks are addressed, especially in gaming envi-
ronments in [5]. The approach taken by Mnih et al. in [5]
builds a dataset of previous experience, similar to the dataset
we build, using batch RL to train large convolutional neural
networks in a supervised learning setting.

Imitation learning is used to transfer human knowledge by
matching the performance of the demonstrator. One popular
algorithm, DAGGER [6], iteratively produces new policies
based on polling the expert policy outside its original state
space and our proposed algorithm has certain similarities
to it. However, DAGGER needs the demonstrator to be
available during training to provide feedback to the agent.
Duan et al. [7] uses one-shot imitation learning where the
agent is provided with an entire demonstration as input
in addition to the current state. The problem with [7] is
that it requires a distribution of tasks with different initial
conditions and goal states, and the agent can never learn to
improve upon the demonstrations.

Use of Apprenticeship Learning (AL) and Reinforcement
Learning (RL) for knowledge transfer and policy formation
can be found in [8]. However, it was applied for modeling
helicopter dynamics and deriving control policies, not to
automation task of a previously unseen variant of a task using
many robots.

Also, there has been interest in combining imitation learn-
ing and RL. For example, the algorithm by Taylor et al. [9]
transfers knowledge directly from human policies. Brys et
al. [10], Suay et al. [11] have shown how expert advice

or demonstrations can be used to shape rewards in the RL
problem.

AlphaGo [12] uses a demonstration data set consisting of
expert actions to train a policy network using supervised
learning before interacting with the real task. It uses this
learning to apply policy gradient updates during self-play,
combined with planning roll-outs. AlphaGo is game centric
where we are more focused on bridging the gap between
human and robot behaviours because we are not focused on
the optimality of the system.

Deep Q-learning from Demonstrations (DQfD) [13] uses
pre-training to learn to imitate the demonstrator with a value
function that satisfies the Bellman equation so that it can
be updated with temporal differences updates once the agent
starts interacting with the environment. DQfD has only been
implemented in gaming environments and have used millions
of iterations to train the models.

B. Multi-robot Teams

The system described in Frank et al. [14] has an aug-
mented reality-based platform for object manipulation using
a stationary robot arm. It includes a robotic platform with
two 6 degree-of freedom (DoF) arms, a table with coloured
blocks of different shapes, and a tablet device held by the
user. The robotic system mentioned in Frank et al. [15],
consists of many wheeled mobile robots. In his system,
mobile robots electronics include a motor controller that
drives the wheels and gripper, as well as a single board
computer that provides Wi-Fi connectivity and allows robots
to subscribe to commands published by a tablet computer.

Motion planning methods by Bruce et al. [16], control
methods by Chen et al. [17] of multiple mobile robots, and
object transportation using multiple robots are discussed in
many research works [18]. Furthermore, occupancy grids are
used for robot navigation in Elfes et al. [19]. However they
are not used for structure representation in the context of a
learning task. Fiala et al. [20] has used overhead cameras to
track the robots using fiducial markers and to control them.

C. Augmented Reality Based Robot Control

Frank et al. [15] has developed a novel mobile mixed-
reality approach that allows operators to interact with and
control systems of mobile robots, endowed with fiducial
markers, without the need for a structured environment or
specialized, research-grade equipment. In his paper, he dis-
cusses two approaches of mapping user interactions to robot
commands as the device is moved arbitrarily by the operator,
by estimation of a transformation between a coordinate frame
attached to the device and a fixed reference frame. The
workspace used for above study proposed mobile mixed-
reality interfaces using open-source third-party libraries for
computer vision, graphics rendering, and communication
over the robots network. Frank et al. [14] [21] also discusses
about controlling robots including a robot arm using an
augmented reality-based application using fiducial markers
and mapping functions. Those methods are directly used in
our application.

Vision system AR tablet
Learning

system

Simulator

Robot and

obj. loc.

(a) Training phase

Vision system
Learned

system
Robot system

Robot and

obj. loc.

Seq. of

commands

(b) Testing phase
Figure1. System overview.

III. METHODOLOGY

First, the users are advised to sketch a toy building to their
liking either using the developed simulator platform or the
AR system implemented on a tablet computer. Next, the users
will construct the building they sketched by moving two
types of blocks (cubes and cylinders), and these sequences
of actions taken by the users will be recorded. At the same
time, the actions are materialized in the physical world
with the help of a robot team to actually build the toy
building. There is an overhead camera, which keeps track
of the blocks and the robots using fiducial markers, to help
the building constructing process. The recorded sequence
of actions together with the building structure are deep
learned by the system so that the system becomes capable of
completing a previously unseen, relatively complex variant
of a building task.

The proposed system consists of 4 sub-systems to achieve
the objectives.

• Deep learning environment to learn and predict the
sequence of actions

• Hardware system including the robots and the
workspace.

• Augmented reality based robot control for the learning
model.

• The vision system with ALVAR markers. [22]

The main focus is on the deep learning system that learns
from humans to make the team of robots achieve the task.
The robots and the vision system, which we discuss up to a
certain extent, are used for proving the concept.

Figure 1 shows the system overview in the training phase
and testing phase. In the training phase, the learning system
receives the sequences of action taken by multiple humans in
achieving a specified variant of the task. This can be either by
moving the actual robots using the augmented reality tablet
in its manual mode or using the simulator environment. In
the testing phase, once the the previously unseen variant of
the task is given, the learned system issues a sequence of
commands to the robot system (in the automatic mode) to
achieve the task. Figure 2 shows a picture of the proof-of-
concept system implementation.

A. Workspace

The workspace consists of three main areas. The material
placement area is used to place blocks required for the con-
struction. The blocks used in building the structure consist
of two different types (i.e. cubes and cylinders) that are
placed randomly in the workspace. Two mobile robots carry
these blocks to the unloading area. Finally, the robot arm
manipulates these blocks to construct the toy building. Each
level in the construction area comprises of 3× 5 locations,
and there are 3 levels, giving rise to 45 variants of locations.
The overall workspace is shown in Figure 3.

B. The Vision System and ALVAR Markers

We have used an overhead camera feed to obtain the
locations of the robots and the construction blocks using
fiducial marks attached to them.

We have used Robot Operating System (ROS) [23] as
the main software platform to control the system. ALVAR
markers [22] are used as the fiducial markers, which have
unique patterns that can be detected by its ROS library.
Finally, using the marker tracking information we create
the map of the workspace, and it is visualized using ROS
Visualization (Rviz) tool.

C. Robot System

The robot system comprises of two mobile robots and
one robot arm, that functions collaboratively to achieve a
final goal of constructing a given building pattern on the
workspace using different types of blocks. The dimensions
of a mobile robot is 30 cm× 20 cm× 9 cm without the
arm expansion. We have placed a 12 cm × 12 cm sized
ALVAR marker on top of the robot to uniquely identify each
mobile robot. The mobile robot arm has a simple gripping
mechanism, where two grippers are controlled using a servo
motor. Figure 4(a) shows one of the actual mobile robots
designed for our system.

A ROS node [23] written in Python is capable of moving
the blocks from an initial position of the block to the
unloading area as commanded. In the manual mode, this node
directly listens to the commands coming from a node running
on a tablet computer. In the automatic mode, commands
generated from the DL model reach this node, through a
controller node running on the server computer.

Figure 2. The proof-of-concept system implementation.

Figure 3. The workspace with robots, and objects.

When the robot is given a final g oal, i t a nalyzes this
dynamic map and accordingly moves towards the goal while
avoiding the obstacles on its path. In our robot navigation
algorithm, few points are simulated ahead of the robot path
and the point which is closest to the goal and guarantees no
collision with blocks is chosen as a sub-goal. Then, the sub-
goals are iteratively defined a s t he r obot m ove t owards the
goal as mentioned above. The above process is repeated until
the robot reaches the actual goal with a tolerance distance.

The robot arm designed for our system has 5 Degrees-
of-Freedom (DoF). Its first t hree j oints a re u sed t o posi-
tion the end effector and the last two joints are used to
adjust the orientation of the end effector. We used four
180-degree servo motors: two FEETECH Ultra-High-Torque
Digital Giant Servos (FT5335M), one Pololu Power HD
High-Torque Servo (1501MG) and one TowerPro MG90 -
Micro Servo. We have used a NEMA 17 stepper motor at
the base of the robot arm and a gear drive with a gear ratio
of 1:4 in the mechanical design, which allows for horizontal
circular motion of the whole structure. We have used an
electromagnetic mechanism to pick up the blocks as they
are of different shapes.

The actual design of the robot arm is shown in the Fig-
ure 4(b). The server computer can send the position of blocks

(a) Mobile robot (b) Robot arm
Figure 4. Actual robots.

Figure 5. GUI of computer application.

with respect to the fixed base of the arm by analyzing the
markers on the blocks as well as arm. Our inverse kinematics
model [24] outputs the joint angles (θ1,θ2,θ3,θ4). Servo
angles calculated using the joint angles, are input to the servo
controller.

D. Data Collection Interfaces

We have developed two mechanisms to collect data for
our conceptual system.

1) A GUI based computer application using JavaFX,
where the user can choose one of the initial layouts for
the workspace or make his own initial layout and move
blocks around very easily using the mouse pointer—
The workspace is represented as a grid where each
cell represents a state: occupied, not-occupied, and
occupied with specific type of block. The state of
each grid cell (time evolution) is tracked through the
application when the user gives inputs to change the
block positions in the grid. This data is later re-read
in Python for the model training. Figure 5 shows the
user interface of the computer application for data
collection.

2) A mobile application used to control the mobile robots
in AR environment, for those who like to interact with
robots—The user can command the robots directly
through this application and we will capture the users
sequence of actions in order to train our system.
Figure 6(a) shows the user interface of the manual
control mode of the system.

E. Android Application for Controlling the System

We have developed an Android application, which works
as a ROS node that can send and receive messages to all the
nodes connected to the same master ROS node. Figure 6(b)
shows the user interface of the autonomous control mode of
the system.

The autonomous control mode is used to give the final
building structure to the system by the user. When the user

sends the building structure, the system predicts the sequence
of control actions and sends that information to the hardware
system. Next, it performs this sequence of actions and builds
the final b uilding s tructure w hich i s c omparable t o a man-
made building.

IV. MACHINE LEARNING MODEL

Our machine learning system predicts the most probable
move (block type and the destination) depending on the
current state defined b y a 4 -D o ccupancy g rid. A training
pattern is an action taken by a human being, given the current
occupancy grid. Here, the process can be thought of as a
Markov process and can be represented using Markov chains
where there is a probability of transitioning from one state to
another. We use a DNN to calculate these state transitioning
probabilities. This system, after training, enables us to get
the robot system to sequentially move blocks to ultimately
achieve the specified variant of the task—building a specified
building in our proof-of-concept example.

In this architecture, we represent the current state using
a 4-D occupancy grid representation using binary values.
Each cell that needs to be filled is represented using one hot
encoding, and the cells which are already occupied—because
of the previous interactions—are represented as negative one
hot encoding. The grid is 4-D to account for the three
levels of the building in our proof-of-concept example and
to handle a type of a block (e.g., cube, cylinder) per physical
occupancy cell. [25] Given the occupancy grid, the user has
the option of selecting one out of 135 (5 spatial, 3 spacial,
3 vertical, 3 types of blocks) actions. The simulator or the
actual AR user input system saves the training data in the
aforementioned occupancy grid format used subsequently for
training along with the action.

Here we draw inspiration from the Deep Q Learning
(DQN) [13] networks in designing the network. In DQN,
a DNN is used to approximate the q value function Q∗(s,a),
where each action a is given a q value depending on the
sate s. In policy gradient methods [26], neural networks
are instead used to represent a policy πθ (a|s). In our work,
the policy is stochastic, i.e., it provides a distribution over
the possible set of actions. The policy is learnt by the user
interactions. We use a similar procedure to learn the sequence
of actions needed to complete a given structure.

We compute the posterior probability of the uncertain
proposition, (the way a human would have chosen to build a
given structure) using DNN. Here, the posterior probability is

(a) Manual mode (b) Autonomous mode
Figure 6. User interfaces of the system.

the probability distribution of an unknown occupancy grid,
treated as a random variable, conditional on the evidence
obtained from the sequences of actions taken by humans.
DNN, a 3D CNN, is able to give a posterior distribution of
the set of actions of a given structure.

Figure 7 shows the architecture of the DNN model used.
We have used categorical crossentropy J as loss function.
The model predicts 1 out of 135 actions, where an action is
defined by the cell location and the block types.

Training data does not cover all the state-action pairs.
Hence, the model does not have access to all the transition
probabilities, as training data are insufficient to cover prob-
ability distributions over all the building structures. Here we
ask the question whether it possible to get the probabilities
for the complete set of state action pairs and achieve the
task, given the final state to mimic the set of actions a human
would take.

We have used two algorithms for the ML model. The
algorithm 1 is used to pre-process data. This generates a
sequence of state action pairs Dreplay from training data. After
that we use the algorithm 2 to train the DNN to be able to
predict the next action to be taken while using P not collected
from humans.

Algorithm 1 Pre-processing: state action pair Dreplay creation

Require: {(B,A)}: building structure B (variant of a task),
and sequence of actions A = {a1,a2, . . . ,an}.

Ensure: Dreplay state, action tuples {(s,a)}
1: for each item in {B,A} do
2: s = B
3: for each action a in A do
4: Add (s,a) to Dreplay.
5: Update state s, replace occupancy grid cell value

w.r.t. the action a
6: end for
7: end for

V. EXPERIMENTS AND RESULTS

In order to establish that our robot team can carry out an
unseen variant of a task after learning from multiple trials
carried out by humans, we carried out three experiments: 1)
Investigating whether humans stick to pattern given a variant
of a task, 2) Getting the robots to build unseen variants of
building (structures) after by learning, 3) Investigating the
effect of using top-5 predictions of the DNN.

1) The main aim of this study was to build a ML
friendly environment to capture the user interactions in a
sequential task. For the selected example, it is the sequence
of block placements carried by humans. Humans usually
approach this sequential task by following a pattern if they
identify one at the outset. In order to verify this, we gave
50 people 11 variant of tasks and asked them to fill the
sequence of placement using numbers. Figure 8 shows few
of variant of tasks given to humans. First three structures
have clear patterns while the final s tructure h as a random

Figure 7. 3-D CNN architecture of the model.

Algorithm 2 Deep learning from Dreplay

Require: Dreplay: state-action pairs (Algorithm 1).
Require: θ : weights initialization for the DNN.
Require: k: number of epochs.
Require: P: patterns not included in Dreplay.
Require: k: number of exploratory gradient updates.
Ensure: θ : updated weights for the DNN.

1: Step 1:
2: for steps t ∈ {1,2, . . . ,k} do
3: Sample a mini-batch of n transitions from Dreplay.
4: Calculate loss J using CNN network.
5: Perform an epoch to update θ .
6: end for
7: Step 2:
8: for steps t ∈ {1,2, . . . ,k′} do
9: for each pattern p in P do

10: Calculate action a using the network for s = p.
11: Sample action from 3 highest probable actions a

and validate the action
12: If a is erroneous: break
13: Add (s,a) to Dreplay.
14: Update s
15: Iterate until completion of the pattern p
16: end for
17: Do Step 1
18: end for

block placement. There are three separate occupancy grids
for three levels of the building.

We observed that for structure 1, 94% of the building pat-
terns were similar. For structures 2 and 3, the corresponding
values were 82% and 86%, respectively. . On the other hand,
if there is no pattern visible (as in structure 4), they seemed to
resort to seemingly a random sequences. This confirms that

Fig. 8: Few structures (variants of tasks) given. Boxes are
marked with “x” and cylinder are marked with “o”.

humans, in general, adhere to a pattern in taking a sequence
of actions.

We have given the same 11 structures to our ML model
and the model was able to predict all the moves correctly.
Figure 9 shows the ML model output of few them. These
patterns are identified correctly by the system and the action
sequences are predicted similar to how a human would have
preferred to build that structure.

2) We trained the system using 300 different building
structures. 50 previously unseen structures were given and
the below results were analyzed considering only the highest
probable action selected by the model. For 34 buildings
out of 50, a correct action sequence was 100% accurately
predicted by the system. 45 out of 50 buildings had more
than 75% accuracy. 523 out of 590 states were correctly
predicted by the model. Therefore, the average accuracy of
the system is 88.64%. Most errors were due to the inability to
identify the correct block type when there was no identifiable
pattern in the building structure.

3) Additionally, we have tested the accuracy of the system,
considering the input state s and predicted action a with the
actions taken by the demonstrators. We have considered the 5
most probable actions predicted by the system for the results
comparison. The results obtained from the above experiment
are shown in the TABLE I. Accuracy columns in TABLE
I represent accuracy values considering the training data set
and the testing data set drawn from Dreplay in algorithm (1).

Figure 9. Predicted building structures by the model. Top-left in each box: specified structure. Other boxes: states visited denoting the sequence of
predictions. Top-left and bottom-right box in each cell are identical indicating the correctness of the predictions of the DNN. Best seen in color.

TABLE I: ACCURACY OF THE ML MODEL

Training Accuracy Testing Accuracy

First choice only 88.64% 75.60%
First 2 choices 92.90% 83.10%
First 3 choices 95.30% 87.40%
First 4 choices 97.50% 90.40%
First 5 choices 98.60% 92.10%

Results conclude that the system is able to capture human
behaviour and perform the sequence of actions in a human-
like manner.

VI. CONCLUSION

In this work, we developed a system for training a set of
robots to achieve a relatively complex task. We collected data
to train a deep convolutional network by asking humans to
carry out a variant of the task either using the AR platform or
simulator. We recorded the gathered training data in the form
of a sequence of occupancy grids and actions taken. Then
we trained a deep convolutional network. In the testing time,
this network predicts the next action based on the current
occupancy grid. Such a sequence of actions leads to the robot
team completing a previously unseen variant of the task. We
achieved more than 80% accuracy in taking the top-predicted

action. We achieved even better accuracy by choosing one
of top five actions, as we have a notion of the validity of a
predicted action.

In future, we need to investigate incorporating constraints
to ban predication of invalid actions, increasing the size of
the robot team, and increasing the complexity of the task.

REFERENCES

[1] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, “Neural com-
binatorial optimization with reinforcement learning,” arXiv preprint
arXiv:1611.09940, 2016.

[2] S. Calinon, F. Dhalluin, E. Sauser, D. Caldwell, and A. Billard, “A
probabilistic approach based on dynamical syst. to learn and reproduce
gestures by imitation,” IEEE Robot. Autom. Mag., vol. 17, no. 2, pp.
44–54, 2010.

[3] M. Laskey, C. Chuck, J. Lee, J. Mahler, S. Krishnan, K. Jamieson,
A. Dragan, and K. Goldberg, “Comparing human-centric and robot-
centric sampling for robot deep learning from demonstrations,” in
Proc. IEEE Int. Conf. Robot. Autom., Singapore, May 2017, pp. 358–
365.

[4] N. Michael, M. M. Zavlanos, V. Kumar, and G. J. Pappas, “Distributed
multi-robot task assignment and formation control,” in Proc. IEEE Int.
Conf. Robot. Autom., Pasadena, CA, May 2008, pp. 128–133.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[6] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in Proc. of the
fourteenth Int. Conf. on artificial intelligence and statistics, 2011, pp.
627–635.

[7] Y. Duan, M. Andrychowicz, B. Stadie, O. J. Ho, J. Schneider,
I. Sutskever, P. Abbeel, and W. Zaremba, “One-shot imitation learn-
ing,” in Proc. Adv. in Neural Inf. Process. Syst., 2017, pp. 1087–1098.

[8] P. Abbeel and A. Y. Ng, “Exploration and apprenticeship learning in
reinforcement learning,” in Proc. Int. Conf. Mach. Learning. ACM,
2005, pp. 1–8.

[9] M. E. Taylor, H. B. Suay, and S. Chernova, “Integrating reinforcement
learning with human demonstrations of varying ability,” in Proc. Int.
Conf. on Auton. Agents and Multiagent Syst., 2011, pp. 617–624.

[10] T. Brys, A. Harutyunyan, H. B. Suay, S. Chernova, M. E. Taylor,
and A. Nowé, “Reinforcement learning from demonstration through
shaping,” in Twenty-Fourth Int. Joint Conf. on Artificial Intelligence,
2015.

[11] H. B. Suay, T. Brys, M. E. Taylor, and S. Chernova, “Learning from
demonstration for shaping through inverse reinforcement learning,”
in Proceedings of the 2016 Int. Conf. on Autonomous Agents &
Multiagent Syst. Int. Foundation for Autonomous Agents and
Multiagent Syst., 2016, pp. 429–437.

[12] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural
networks and tree search,” nature, vol. 529, no. 7587, p. 484, 2016.

[13] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot,
D. Horgan, J. Quan, A. Sendonaris, I. Osband, G. Dulac-Arnold,
J. Agapiou, J. Z. Leibo, and A. Gruslys, “Deep q-learning from
demonstrations,” in AAAI Conf. on Artificial Intell., New Orleans, LA,
2018.

[14] J. A. Frank, M. Moorhead, and V. Kapila, “Realizing mixed-reality
environments with tablets for intuitive human-robot collaboration for
object manipulation tasks,” in IEEE Int. Symp. on Robot and Human
Interactive Commun., New York, NY, 2016, pp. 302–307.

[15] J. A. Frank, S. P. Krishnamoorthy, and V. Kapila, “Toward mobile

mixed-reality interaction with multi-robot syst.” IEEE Robot. Autom.
Lett., vol. 2, no. 4, pp. 1901–1908, 2017.

[16] J. Bruce and M. Veloso, “Real-time randomized path planning for
robot navigation,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot and Sys.,
vol. 3, Lausanne, Switzerland, 2002, pp. 2383–2388.

[17] Q. Chen and J. Luh, “Coordination and control of a group of small
mobile robots,” in Proc. IEEE Int. Conf. Robot. Autom. IEEE, 1994,
pp. 2315–2320.

[18] A. Yamashita, T. Arai, J. Ota, and H. Asama, “Motion planning of
multiple mobile robots for cooperative manipulation and transporta-
tion,” IEEE Trans. Robot. Autom., vol. 19, no. 2, pp. 223–237, 2003.

[19] A. Elfes, “Using occupancy grids for mobile robot perception and
navigation,” Computer, vol. 22, no. 6, pp. 46–57, 1989.

[20] M. Fiala, “A robot control and augmented reality interface for multiple
robots,” in Canadian Conf. on Comput. and Robot Vision. IEEE, 2009,
pp. 31–36.

[21] J. A. Frank, M. Moorhead, and V. Kapila, “Mobile mixed-reality
interfaces that enhance human–robot interaction in shared spaces,”
Frontiers in Robot. and AI, vol. 4, p. 20, 2017.

[22] C. Woodward, J. Lahti, J. Rönkkö, P. Honkamaa, M. Hakkarainen,
J. Jäppinen, K. Rainio, S. Siltanen, and J. Hyväkkä, “Case digitalo-
a range of virtual and augmented reality solutions in construction
application,” in 24th W78 Conf., Maribor. In: 24th W, vol. 78, 2007,
pp. 529–540.

[23] “Robot Operating System (ROS) - Documentation Guide.” [Online].
Available: http://wiki.ros.org/

[24] M. W. Spong, S. Hutchinson, M. Vidyasagar et al., Robot modeling
and control, 2006, ch. Forward and inverse kinematics.

[25] D. Meyer-Delius, M. Beinhofer, and W. Burgard, “Occupancy grid
models for robot mapping in changing environments,” in AAAI Conf.
on Artificial Intell., Toronto, Ontario, Canada, 2012.

[26] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Ried-
miller, “Deterministic policy gradient algorithms,” in Proc. Int. Conf.
Mach. Learning, Beijing, China, 2014, pp. 387–395.

http://wiki.ros.org/

	INTRODUCTION
	RELATED WORK
	Learning frameworks
	Multi-robot Teams
	Augmented reality based robot control

	METHODOLOGY
	Workspace
	The Vision System and ALVAR Markers
	Robot System
	Data Collection Interfaces
	Android Application for Controlling the System

	MACHINE LEARNING MODEL
	EXPERIMENTS AND RESULTS
	CONCLUSION
	References

